BACKGROUND: A couple may be considered to have fertility problems if they have been trying to conceive for over a year with no success. This may affect up to a quarter of all couples planning a child. It is estimated that for 40% to 50% of couples, subfertility may result from factors affecting women. Antioxidants are thought to reduce the oxidative stress brought on by these conditions. Currently, limited evidence suggests that antioxidants improve fertility, and trials have explored this area with varied results. This review assesses the evidence for the effectiveness of different antioxidants in female subfertility.
OBJECTIVES: To determine whether supplementary oral antioxidants compared with placebo, no treatment/standard treatment or another antioxidant improve fertility outcomes for subfertile women.
SEARCH METHODS: We searched the following databases (from their inception to September 2019), with no language or date restriction: Cochrane Gynaecology and Fertility Group (CGFG) specialised register, CENTRAL, MEDLINE, Embase, PsycINFO, CINAHL and AMED. We checked reference lists of relevant studies and searched the trial registers.
SELECTION CRITERIA: We included randomised controlled trials (RCTs) that compared any type, dose or combination of oral antioxidant supplement with placebo, no treatment or treatment with another antioxidant, among women attending a reproductive clinic. We excluded trials comparing antioxidants with fertility drugs alone and trials that only included fertile women attending a fertility clinic because of male partner infertility.
DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by Cochrane. The primary review outcome was live birth; secondary outcomes included clinical pregnancy rates and adverse events.
MAIN RESULTS: We included 63 trials involving 7760 women. Investigators compared oral antioxidants, including: combinations of antioxidants, N-acetylcysteine, melatonin, L-arginine, myo-inositol, carnitine, selenium, vitamin E, vitamin B complex, vitamin C, vitamin D+calcium, CoQ10, and omega-3-polyunsaturated fatty acids versus placebo, no treatment/standard treatment or another antioxidant. Only 27 of the 63 included trials reported funding sources. Due to the very low-quality of the evidence we are uncertain whether antioxidants improve live birth rate compared with placebo or no treatment/standard treatment (odds ratio (OR) 1.81, 95% confidence interval (CI) 1.36 to 2.43; P < 0.001, I2 = 29%; 13 RCTs, 1227 women). This suggests that among subfertile women with an expected live birth rate of 19%, the rate among women using antioxidants would be between 24% and 36%. Low-quality evidence suggests that antioxidants may improve clinical pregnancy rate compared with placebo or no treatment/standard treatment (OR 1.65, 95% CI 1.43 to 1.89; P < 0.001, I2 = 63%; 35 RCTs, 5165 women). This suggests that among subfertile women with an expected clinical pregnancy rate of 19%, the rate among women using antioxidants would be between 25% and 30%. Heterogeneity was moderately high. Overall 28 trials reported on various adverse events in the meta-analysis. The evidence suggests that the use of antioxidants makes no difference between the groups in rates of miscarriage (OR 1.13, 95% CI 0.82 to 1.55; P = 0.46, I2 = 0%; 24 RCTs, 3229 women; low-quality evidence). There was also no evidence of a difference between the groups in rates of multiple pregnancy (OR 1.00, 95% CI 0.63 to 1.56; P = 0.99, I2 = 0%; 9 RCTs, 1886 women; low-quality evidence). There was also no evidence of a difference between the groups in rates of gastrointestinal disturbances (OR 1.55, 95% CI 0.47 to 5.10; P = 0.47, I2 = 0%; 3 RCTs, 343 women; low-quality evidence). Low-quality evidence showed that there was also no difference between the groups in rates of ectopic pregnancy (OR 1.40, 95% CI 0.27 to 7.20; P = 0.69, I2 = 0%; 4 RCTs, 404 women). In the antioxidant versus antioxidant comparison, low-quality evidence shows no difference in a lower dose of melatonin being associated with an increased live-birth rate compared with higher-dose melatonin (OR 0.94, 95% CI 0.41 to 2.15; P = 0.89, I2 = 0%; 2 RCTs, 140 women). This suggests that among subfertile women with an expected live-birth rate of 24%, the rate among women using a lower dose of melatonin compared to a higher dose would be between 12% and 40%. Similarly with clinical pregnancy, there was no evidence of a difference between the groups in rates between a lower and a higher dose of melatonin (OR 0.94, 95% CI 0.41 to 2.15; P = 0.89, I2 = 0%; 2 RCTs, 140 women). Three trials reported on miscarriage in the antioxidant versus antioxidant comparison (two used doses of melatonin and one compared N-acetylcysteine versus L-carnitine). There were no miscarriages in either melatonin trial. Multiple pregnancy and gastrointestinal disturbances were not reported, and ectopic pregnancy was reported by only one trial, with no events. The study comparing N-acetylcysteine with L-carnitine did not report live birth rate. Very low-quality evidence shows no evidence of a difference in clinical pregnancy (OR 0.81, 95% CI 0.33 to 2.00; 1 RCT, 164 women; low-quality evidence). Low quality evidence shows no difference in miscarriage (OR 1.54, 95% CI 0.42 to 5.67; 1 RCT, 164 women; low-quality evidence). The study did not report multiple pregnancy, gastrointestinal disturbances or ectopic pregnancy. The overall quality of evidence was limited by serious risk of bias associated with poor reporting of methods, imprecision and inconsistency.
AUTHORS' CONCLUSIONS: In this review, there was low- to very low-quality evidence to show that taking an antioxidant may benefit subfertile women. Overall, there is no evidence of increased risk of miscarriage, multiple births, gastrointestinal effects or ectopic pregnancies, but evidence was of very low quality. At this time, there is limited evidence in support of supplemental oral antioxidants for subfertile women.
BACKGROUND: Women with polycystic ovary syndrome (PCOS) are almost three times more likely to be obese than those without PCOS. However, we have no specific interventions to induce weight loss so far and rely on drugs used to treat other symptoms of the syndrome or obesity in the general population.
OBJECTIVE: The objective of this study is to compare the effectiveness of metformin, inositol, liraglutide and orlistat to induce weight loss in women with PCOS and overweight/obesity.
METHODS: A search was conducted using the MEDLINE, EMBASE, PubMed and CENTRAL databases. Individually randomized, parallel group trials that evaluated the effects of these pharmacological treatments among adults or adolescents with PCOS and overweight/obesity, compared with a placebo or metformin group, were considered eligible. Registration number: PROSPERO CRD 42017076625.
RESULTS: Twenty-three trials reporting on 941 women were included in the network meta-analysis. The amount of weight lost differed significantly among the drugs (in descending order): liraglutide, orlistat and metformin. Liraglutide alone, liraglutide/metformin and metformin alone significantly reduced waist circumference, but no change was found with orlistat. Data for waist-to-hip ratio were only available for metformin, which had no significant effect.
CONCLUSION: Liraglutide appears superior to the other drugs in reducing weight and waist circumference.
BACKGROUND: Polycystic ovary syndrome (PCOS) is a common, reproductive endocrinopathy associated with serious short and long term health risks. Many women with PCOS use ingestible complementary medicines. This systematic review examined the effect on menstrual regulation and adverse effects from randomised controlled trials.
METHODS: Randomised controlled trials (RCTs) that compared herbal or nutritional supplements to placebo or active controls in women with PCOS were eligible for inclusion. Electronic databases were searched to July 2017. Study selection and assessment of quality were conducted independently by two review authors.
RESULTS: Twenty four studies (1406 women) investigating seven nutritional supplements and four herbal medicines were included. No one study was assessed as having a low risk of bias. Four trials reported on the primary endpoint menstrual regulation. There was no evidence on improved menstrual regularity for calcium plus vitamin D compared to Metformin (RR: 0.66, 95% CI 0.35 to 1.23, p = 0.19), reduced amenorrhoea for Camellia sinensis compared to placebo (RR: 0.17, 95% CI 0.02 to 1.72, p = 0.13) and no difference in the number of menses per month for Cinnamomum sp. against placebo (MD 0.05, 95% CI -0.36 to 1.36, p = 0.26). Adverse effects were investigated in seven studies (164 women). Mild adverse effects were found for Cinnamomum sp. compared to placebo (17 women, RR: 0.36, 95% CI 0.03 to 0.70, p = 0.03). No difference was found for adverse effects between inositol, B complex vitamins, vitamin D, chromium and placebo. Improved reproduction, metabolic hormones and hyperandrogenism was found for inositol and improved cholesterol for omega three fish oils.
CONCLUSION: There is no high quality evidence to support the effectiveness of nutritional supplements and herbal medicine for women with PCOS and evidence of safety is lacking. High quality trials of nutritional supplements and herbal medicines examining menstrual regulation and adverse effects in women with PCOS are needed.
BACKGROUND: Polycystic ovary syndrome (PCOS) is characterised by infrequent or absent ovulation, and high levels of androgens and insulin (hyperinsulinaemia). Hyperinsulinaemia occurs secondary to insulin resistance and is associated with increased risk of cardiovascular disease and diabetes mellitus. Insulin-sensitising agents such as metformin may be effective in treating PCOS-related anovulation.
OBJECTIVES: To evaluate the effectiveness and safety of insulin-sensitising drugs in improving reproductive and metabolic outcomes for women with PCOS undergoing ovulation induction.
SEARCH METHODS: We searched the following databases from inception to January 2017: Cochrane Gynaecology and Fertility Group Specialised Register, CENTRAL, MEDLINE, Embase, PsycINFO and CINAHL. We searched registers of ongoing trials and reference lists from relevant studies.
SELECTION CRITERIA: We included randomised controlled trials of insulin-sensitising drugs compared with placebo, no treatment, or an ovulation-induction agent for women with oligo and anovulatory PCOS.
DATA COLLECTION AND ANALYSIS: Two review authors independently assessed studies for eligibility and bias. Primary outcomes were live birth rate and gastrointestinal adverse effects. Secondary outcomes included other pregnancy outcomes, menstrual frequency and metabolic effects. We combined data to calculate pooled odds ratios (ORs) and 95% confidence intervals (CIs). We assessed statistical heterogeneity using the I2 statistic and reported quality of the evidence for primary outcomes using GRADE methodology.
MAIN RESULTS: We assessed the interventions metformin, clomiphene citrate, metformin plus clomiphene citrate, D-chiro-inositol, rosiglitazone and pioglitazone. We compared these with each other, placebo or no treatment. We included 48 studies (4451 women), 42 of which investigated metformin (4024 women). Evidence quality ranged from very low to moderate. Limitations were risk of bias (poor reporting of methodology and incomplete outcome data), imprecision and inconsistency. Metformin versus placebo or no treatmentThe evidence suggests that metformin may improve live birth rates compared with placebo (OR 1.59, 95% CI 1.00 to 2.51, 4 studies, 435 women, I2 = 0%, low-quality evidence). The metformin group experienced more gastrointestinal side effects (OR 4.76, 95% CI 3.06 to 7.41, 7 studies, 670 women, I2 = 61%, moderate-quality evidence) but had higher rates of clinical pregnancy (OR 1.93, 95% CI 1.42 to 2.64, 9 studies, 1027 women, I2 = 43%, moderate-quality evidence), ovulation (OR 2.55, 95% CI 1.81 to 3.59, 14 studies, 701 women, I2 = 58%, moderate-quality evidence) and menstrual frequency (OR 1.72, 95% CI 1.14 to 2.61, 7 studies, 427 women, I2 = 54%, low-quality evidence). There was no clear evidence of a difference in miscarriage rates (OR 1.08, 95% CI 0.50 to 2.35, 4 studies, 748 women, I2 = 0%, low-quality evidence). Metformin plus clomiphene citrate versus clomiphene citrate alone There was no conclusive evidence of a difference between the groups in live birth rates (OR 1.21, 95% CI 0.92 to 1.59, 9 studies, 1079 women, I2 = 20%, low-quality evidence), but gastrointestinal side effects were more common with combined therapy (OR 3.97, 95% CI 2.59 to 6.08, 3 studies, 591 women, I2 = 47%, moderate-quality evidence). However, the combined therapy group had higher rates of clinical pregnancy (OR 1.59, 95% CI 1.27 to 1.99, 16 studies, 1529 women, I2 = 33%, moderate-quality evidence) and ovulation (OR 1.57, 95% CI 1.28 to 1.92, 21 studies, 1624 women, I2 = 64%, moderate-quality evidence). There was a statistically significant difference in miscarriage rate per woman, with higher rates in the combined therapy group (OR 1.59, 95% CI 1.03 to 2.46, 9 studies, 1096 women, I2 = 0%, low-quality evidence) but this is of uncertain clinical significance due to low-quality evidence, and no clear difference between groups when we analysed miscarriage per pregnancy (OR 1.30, 95% CI 0.80 to 2.12, 8 studies; 400 pregnancies, I2 = 0%, low-quality evidence). Metformin versus clomiphene citrateWhen all studies were combined, findings for live birth were inconclusive and inconsistent (OR 0.71, 95% CI 0.49 to 1.01, 5 studies, 741 women, I2 = 86%, very low-quality evidence). In subgroup analysis by obesity status, obese women had a lower birth rate in the metformin group (OR 0.30, 95% CI 0.17 to 0.52, 2 studies, 500 women, I2 = 0%, very low-quality evidence), while data from the non-obese group showed a possible benefit from metformin, with high heterogeneity (OR 1.71, 95% CI 1.00 to 2.94, 3 studies, 241 women, I2 = 78%, very low-quality evidence). Similarly, among obese women taking metformin there were lower rates of clinical pregnancy (OR 0.34, 95% CI 0.21 to 0.55, 2 studies, 500 women, I2 = 0%, very low-quality evidence) and ovulation (OR 0.29, 95% CI 0.20 to 0.43 2 studies, 500 women, I2 = 0%, low-quality evidence) while among non-obese women, the metformin group had more pregnancies (OR 1.56, 95% CI 1.05 to 2.33, 5 studies, 490 women, I2 = 41%, very low-quality evidence) and no clear difference in ovulation rates (OR 0.81, 95% CI 0.51 to 1.28, 4 studies, 312 women, low-quality evidence, I2=0%). There was no clear evidence of a difference in miscarriage rates (overall: OR 0.92, 95% CI 0.50 to 1.67, 5 studies, 741 women, I2 = 52%, very low-quality evidence). D-chiro-inositol (2 studies), rosiglitazone (1 study) or pioglitazone (1 study) versus placebo or no treatmentWe were unable to draw conclusions regarding other insulin-sensitising drugs as no studies reported primary outcomes.
AUTHORS' CONCLUSIONS: Our updated review suggests that metformin alone may be beneficial over placebo for live birth, although the evidence quality was low. When metformin was compared with clomiphene citrate, data for live birth were inconclusive, and our findings were limited by lack of evidence. Results differed by body mass index (BMI), emphasising the importance of stratifying results by BMI. An improvement in clinical pregnancy and ovulation suggests that clomiphene citrate remains preferable to metformin for ovulation induction in obese women with PCOS.An improved clinical pregnancy and ovulation rate with metformin and clomiphene citrate versus clomiphene citrate alone suggests that combined therapy may be useful although we do not know whether this translates into increased live births. Women taking metformin alone or with combined therapy should be advised that there is no evidence of increased miscarriages, but gastrointestinal side effects are more likely.
Polyzystische Ovar-Syndrom (PCOS) wirkt sich auf 5% -10% der Frauen im gebärfähigen Alter, und es ist die häufigste Ursache für Unfruchtbarkeit aufgrund Eierstockfunktionsstörungen und Menstruationsstörungen ist. Mehrere Studien haben berichtet, dass Insulinresistenz ist üblich in PCOS Frauen, unabhängig vom Body Mass Index. Die Bedeutung von Insulin-Resistenz bei PCOS wird auch durch die Tatsache, daß Insulin-sensibilisierende Verbindungen als möglicher Behandlungen, die Hyperinsulinämie-induzierte Störung der ovariellen Reaktion auf endogenen Gonadotropine lösen vorgeschlagen vorgeschlagen. Die Rettung der ovariellen Reaktion auf endogene Gonadotropine reduziert Hyperandrogenämie und baut diese neu Menstruations Zyklizität und der Eisprung erhöht die Chance auf eine spontane Schwangerschaft. Unter den Insulin-sensibilisierende Verbindungen besteht myo-inosiol (MYO). Frühere Studien haben gezeigt, dass MYO fähig, den spontanen Aktivität der Eierstöcke und somit die Fruchtbarkeit bei den meisten Patienten mit PCOS. Mit dieser Überprüfung wollen wir einen Überblick über die klinischen Ergebnisse der MYO Einsatz als Behandlung zur Funktion der Eierstöcke und metabolische und hormonelle Parameter bei Frauen mit PCOS zu verbessern.