Systematic reviews including this primary study

loading
3 articles (3 References) loading Revert Studify

Systematic review

Unclassified

Journal JAMA network open
Year 2023
Loading references information
IMPORTANCE: Antimicrobial resistance continues to spread rapidly at a global scale. Little evidence exists on the association of antimicrobial stewardship programs (ASPs) with the consumption of antibiotics across health care and income settings. OBJECTIVE: To synthesize current evidence regarding the association between antimicrobial stewardship programs and the consumption of antibiotics globally. DATA SOURCES: PubMed, Web of Science, and Scopus databases were searched from August 1, 2010, to Aug 1, 2020. Additional studies from the bibliography sections of previous systematic reviews were included. STUDY SELECTION: Original studies of the association of ASPs with antimicrobial consumption across health care and income settings. Animal and environmental studies were excluded. DATA EXTRACTION AND SYNTHESIS: Following the Preferred Reporting Items in Systematic Reviews and Meta-Analyses guideline, the pooled association of targeted ASPs with antimicrobial consumption was measured using multilevel random-effects models. The Effective Public Health Practice Project quality assessment tool was used to assess study quality. MAIN OUTCOMES AND MEASURES: The main outcome measures were proportion of patients receiving an antibiotic prescription and defined daily doses per 100 patient-days. RESULTS: Overall, 52 studies (with 1 794 889 participants) measured the association between ASPs and antimicrobial consumption and were included, with 40 studies conducted in high-income countries and 12 in low- and middle-income countries (LMICs). ASPs were associated with a 10% (95% CI, 4%-15%) reduction in antibiotic prescriptions and a 28% reduction in antibiotic consumption (rate ratio, 0.72; 95% CI, 0.56-0.92). ASPs were also associated with a 21% (95% CI, 5%-36%) reduction in antibiotic consumption in pediatric hospitals and a 28% reduction in World Health Organization watch groups antibiotics (rate ratio, 0.72; 95% CI, 0.56-0.92). CONCLUSIONS AND RELEVANCE: In this systematic review and meta-analysis, ASPs appeared to be effective in reducing antibiotic consumption in both hospital and nonhospital settings. Impact assessment of ASPs in resource-limited settings remains scarce; further research is needed on how to best achieve reductions in antibiotic use in LMICs.

Systematic review

Unclassified

Journal The Cochrane database of systematic reviews
Year 2022
Loading references information
BACKGROUND: Acute respiratory infections (ARIs) are by far the most common reason for prescribing an antibiotic in primary care, even though the majority of ARIs are of viral or non-severe bacterial aetiology. It follows that in many cases antibiotic use will not be beneficial to a patient's recovery but may expose them to potential side effects. Furthermore, limiting unnecessary antibiotic use is a key factor in controlling antibiotic resistance. One strategy to reduce antibiotic use in primary care is point-of-care biomarkers. A point-of-care biomarker (test) of inflammation identifies part of the acute phase response to tissue injury regardless of the aetiology (infection, trauma, or inflammation) and may be used as a surrogate marker of infection, potentially assisting the physician in the clinical decision whether to use an antibiotic to treat ARIs. Biomarkers may guide antibiotic prescription by ruling out a serious bacterial infection and help identify patients in whom no benefit from antibiotic treatment can be anticipated. This is an update of a Cochrane Review first published in 2014. OBJECTIVES: To assess the benefits and harms of point-of-care biomarker tests of inflammation to guide antibiotic treatment in people presenting with symptoms of acute respiratory infections in primary care settings regardless of patient age. SEARCH METHODS: We searched CENTRAL (2022, Issue 6), MEDLINE (1946 to 14 June 2022), Embase (1974 to 14 June 2022), CINAHL (1981 to 14 June 2022), Web of Science (1955 to 14 June 2022), and LILACS (1982 to 14 June 2022). We also searched three trial registries (10 December 2021) for completed and ongoing trials. SELECTION CRITERIA: We included randomised controlled trials (RCTs) in primary care patients with ARIs that compared the use of point-of-care biomarkers with standard care. We included trials that randomised individual participants, as well as trials that randomised clusters of patients (cluster-RCTs). DATA COLLECTION AND ANALYSIS: Two review authors independently extracted data on the following primary outcomes: number of participants given an antibiotic prescription at index consultation and within 28 days follow-up; participant recovery within seven days follow-up; and total mortality within 28 days follow-up. We assessed risk of bias using the Cochrane risk of bias tool and the certainty of the evidence using GRADE. We used random-effects meta-analyses when feasible. We further analysed results with considerable heterogeneity in prespecified subgroups of individual and cluster-RCTs. MAIN RESULTS: We included seven new trials in this update, for a total of 13 included trials. Twelve trials (10,218 participants in total, 2335 of which were children) evaluated a C-reactive protein point-of-care test, and one trial (317 adult participants) evaluated a procalcitonin point-of-care test. The studies were conducted in Europe, Russia, and Asia. Overall, the included trials had a low or unclear risk of bias. However all studies were open-labelled, thereby introducing high risk of bias due to lack of blinding. The use of C-reactive protein point-of-care tests to guide antibiotic prescription likely reduces the number of participants given an antibiotic prescription, from 516 prescriptions of antibiotics per 1000 participants in the control group to 397 prescriptions of antibiotics per 1000 participants in the intervention group (risk ratio (RR) 0.77, 95% confidence interval (CI) 0.69 to 0.86; 12 trials, 10,218 participants; I² = 79%; moderate-certainty evidence).  Overall, use of C-reactive protein tests also reduce the number of participants given an antibiotic prescription within 28 days follow-up (664 prescriptions of antibiotics per 1000 participants in the control group versus 538 prescriptions of antibiotics per 1000 participants in the intervention group) (RR 0.81, 95% CI 0.76 to 0.86; 7 trials, 5091 participants; I² = 29; high-certainty evidence). The prescription of antibiotics as guided by C-reactive protein tests likely does not reduce the number of participants recovered, within seven or 28 days follow-up (567 participants recovered within seven days follow-up per 1000 participants in the control group versus 584 participants recovered within seven days follow-up per 1000 participants in the intervention group) (recovery within seven days follow-up: RR 1.03, 95% CI 0.96 to 1.12; I² = 0%; moderate-certainty evidence) (recovery within 28 days follow-up: RR 1.02, 95% CI 0.79 to 1.32; I² = 0%; moderate-certainty evidence). The use of C-reactive protein tests may not increase total mortality within 28 days follow-up, from 1 death per 1000 participants in the control group to 0 deaths per 1000 participants in the intervention group (RR 0.53, 95% CI 0.10 to 2.92; I² = 0%; low-certainty evidence). We are uncertain as to whether procalcitonin affects any of the primary or secondary outcomes because there were few participants, thereby limiting the certainty of evidence. We assessed the certainty of the evidence as moderate to high according to GRADE for the primary outcomes for C-reactive protein test, except for mortality, as there were very few deaths, thereby limiting the certainty of the evidence. AUTHORS' CONCLUSIONS: The use of C-reactive protein point-of-care tests as an adjunct to standard care likely reduces the number of participants given an antibiotic prescription in primary care patients who present with symptoms of acute respiratory infection. The use of C-reactive protein point-of-care tests likely does not affect recovery rates. It is unlikely that further research will substantially change our conclusion regarding the reduction in number of participants given an antibiotic prescription, although the size of the estimated effect may change.  The use of C-reactive protein point-of-care tests may not increase mortality within 28 days follow-up, but there were very few events. Studies that recorded deaths and hospital admissions were performed in children from low- and middle-income countries and older adults with comorbidities.  Future studies should focus on children, immunocompromised individuals, and people aged 80 years and above with comorbidities. More studies evaluating procalcitonin and potential new biomarkers as point-of-care tests used in primary care to guide antibiotic prescription are needed.  Furthermore, studies are needed to validate C-reactive protein decision algorithms, with a specific focus on potential age group differences.

Systematic review

Unclassified

Journal Cochrane Database of Systematic Reviews
Year 2015
Loading references information
Background: Shared decision making is an important component of patient-centred care. It is a set of communication and evidence-based practice skills that elicits patients' expectations, clarifies any misperceptions and discusses the best available evidence for benefits and harms of treatment. Acute respiratory infections (ARIs) are one of the most common reasons for consulting in primary care and obtaining prescriptions for antibiotics. However, antibiotics offer few benefits for ARIs, and their excessive use contributes to antibiotic resistance - an evolving public health crisis. Greater explicit consideration of the benefit-harm trade-off within shared decision making may reduce antibiotic prescribing for ARIs in primary care. Objectives: To assess whether interventions that aim to facilitate shared decision making increase or reduce antibiotic prescribing for ARIs in primary care. Search methods: We searched CENTRAL (2014, Issue 11), MEDLINE (1946 to November week 3, 2014), EMBASE (2010 to December 2014) and Web of Science (1985 to December 2014). We searched for other published, unpublished or ongoing trials by searching bibliographies of published articles, personal communication with key trial authors and content experts, and by searching trial registries at the National Institutes of Health and the World Health Organization. Selection criteria: Randomised controlled trials (RCTs) (individual level or cluster-randomised), which evaluated the effectiveness of interventions that promote shared decision making (as the focus or a component of the intervention) about antibiotic prescribing for ARIs in primary care. Data collection and analysis: Two review authors independently extracted and collected data. Antibiotic prescribing was the primary outcome, and secondary outcomes included clinically important adverse endpoints (e.g. re-consultations, hospital admissions, mortality) and process measures (e.g. patient satisfaction). We assessed the risk of bias of all included trials and the quality of evidence. We contacted trial authors to obtain missing information where available. Main results: We identified 10 published reports of nine original RCTs (one report was a long-term follow-up of the original trial) in over 1100 primary care doctors and around 492,000 patients. The main risk of bias came from participants in most studies knowing whether they had received the intervention or not, and we downgraded the rating of the quality of evidence because of this. We meta-analysed data using a random-effects model on the primary and key secondary outcomes and formally assessed heterogeneity. Remaining outcomes are presented narratively. There is moderate quality evidence that interventions that aim to facilitate shared decision making reduce antibiotic use for ARIs in primary care (immediately after or within six weeks of the consultation), compared with usual care, from 47% to 29%: risk ratio (RR) 0.61, 95% confidence interval (CI) 0.55 to 0.68. Reduction in antibiotic prescribing occurred without an increase in patient-initiated re-consultations (RR 0.87, 95% CI 0.74 to 1.03, moderate quality evidence) or a decrease in patient satisfaction with the consultation (OR 0.86, 95% CI 0.57 to 1.30, low quality evidence). There were insufficient data to assess the effects of the intervention on sustained reduction in antibiotic prescribing, adverse clinical outcomes (such as hospital admission, incidence of pneumonia and mortality), or measures of patient and caregiver involvement in shared decision making (such as satisfaction with the consultation; regret or conflict with the decision made; or treatment compliance following the decision). No studies assessed antibiotic resistance in colonising or infective organisms. Authors' conclusions: Interventions that aim to facilitate shared decision making reduce antibiotic prescribing in primary care in the short term. Effects on longer-term rates of prescribing are uncertain and more evidence is needed to determine how any sustained reduction in antibiotic prescribing affects hospital admission, pneumonia and death.