IMPORTANCE: Current guidelines recommend an intravenous bolus dose of a proton pump inhibitor (PPI) followed by continuous PPI infusion after endoscopic therapy in patients with high-risk bleeding ulcers. Substitution of intermittent PPI therapy, if similarly effective as bolus plus continuous-infusion PPI therapy, would decrease the PPI dose, costs, and resource use.
OBJECTIVE: To compare intermittent PPI therapy with the currently recommended bolus plus continuous-infusion PPI regimen for reduction of ulcer rebleeding.
DATA SOURCES: Searches included MEDLINE, EMBASE, and the Cochrane Central Register of Controlled Trials databases through December 2013; US and European gastroenterology meeting abstracts from 2009 to 2013; and bibliographies of systematic reviews.
STUDY SELECTION: Randomized trials of patients with endoscopically treated high-risk bleeding ulcers (active bleeding, nonbleeding visible vessels, and adherent clots) comparing intermittent doses of PPIs and the currently recommended regimen (80-mg intravenous bolus dose of a PPI followed by an infusion of 8 mg/h for 72 hours).
DATA EXTRACTION AND SYNTHESIS: Duplicate independent data extraction and risk-of-bias assessment were performed. Data were pooled using a fixed-effects model or a random effects model if statistical heterogeneity was present.
MAIN OUTCOMES AND MEASURES: The primary outcome was rebleeding within 7 days; additional predefined outcomes included rebleeding within 3 and 30 days, need for urgent intervention, mortality, red blood cell transfusion, and length of hospital stay. The primary hypothesis, defined before initiation of the literature review, was that intermittent use of PPIs was noninferior to bolus plus continuous infusion of PPIs, with the noninferiority margin predefined as an absolute risk difference of 3%.
RESULTS: The risk ratio of rebleeding within 7 days for intermittent vs bolus plus continuous infusion of PPIs was 0.72 (upper boundary of 1-sided 95% CI, 0.97) and the absolute risk difference was -2.64% (upper boundary of 1-sided 95% CI, -0.28%, which is well below the predefined noninferiority margin of 3%). Risk ratios for rebleeding within 30 days and 3 days, mortality, and urgent interventions were less than 1 and mean differences for blood transfusion and hospital length of stay were less than 0, indicating that no summary estimate showed an increased risk with intermittent therapy. The upper boundaries of 95% CIs for absolute risk differences were less than 1.50% for all predefined rebleeding outcomes.
CONCLUSIONS AND RELEVANCE: Intermittent PPI therapy is comparable to the current guideline-recommended regimen of intravenous bolus plus a continuous infusion of PPIs in patients with endoscopically treated high-risk bleeding ulcers. Guidelines should be revised to recommend intermittent PPI therapy.
BACKGROUND: Treatment with proton pump inhibitors (PPIs) improves clinical outcomes in patients with peptic ulcer bleeding. However, the optimal dose and route of administration of PPIs remains controversial.
OBJECTIVES: To evaluate the efficacy of different regimens of PPIs in the management of acute peptic ulcer bleeding using evidence from direct comparison randomized controlled trials (RCTs).
We specifically intended to assess the differential effect of the dose and route of administration of PPI on mortality, rebleeding, surgical intervention, further endoscopic haemostatic treatment (EHT), length of hospital stay, transfusion requirements and adverse events.
SEARCH METHODS: We searched CENTRAL (in The Cochrane Library 2010, Issue 3), MEDLINE and EMBASE (from inception to September 2010) and proceedings of major gastroenterology meetings (January 2000 to September 2010), without language restrictions. Original investigators were contacted to request missing data.
SELECTION CRITERIA: RCTs that compared at least two different regimens of the same or a different PPI in patients with acute peptic ulcer bleeding, diagnosed endoscopically.
DATA COLLECTION AND ANALYSIS: Two reviewers independently selected studies, extracted data and assessed risk of bias. We synthesized data using the Mantel-Haenszel random-effects method and performed multivariate meta-regression with random permutations based on Monte Carlo simulation. We measured heterogeneity with the I² statistic and Cochrane Q test and assessed publication bias with funnel plots and Egger’s test. We graded the overall quality of evidence using the GRADE approach.
MAIN RESULTS: Twenty two RCTs were included; risk of bias was high in 17 and unclear in 5. The main analysis included 13 studies (1716 patients) comparing “high” dose regimens (72-hour cumulative dose > 600 mg of intravenous PPI) to other doses; there was no significant heterogeneity for any clinical outcome. We found low quality evidence that did not exclude a potential reduction or increase in mortality, rebleeding, surgical interventions or endoscopic haemostatic treatment (EHT) with “high” dose regimens. For mortality, pooled risk ratio (RR) was 0.85 (95% confidence interval (CI) 0.47 to 1.54); pooled risk difference (RD) was 0 more deaths per 100 patients treated with “high” dose (95% CI from 1 fewer to 2 more deaths per 100 treated). For rebleeding, pooled RR was 1.27 (95% CI 0.96 to 1.67); pooled RD was 2 more rebleeding events per 100 patients treated with “high” dose (95% CI from 0 fewer to 5 more rebleeding events per 100 treated). For surgical interventions, pooled RR was 1.33 (95% CI 0.63 to 2.77); pooled RD was 1 more surgical intervention per 100 patients treated with “high” dose (95% CI from 1 fewer to 2 more surgical interventions per 100 treated). For further EHT, pooled RR was 1.39 (95% CI 0.88 to 2.18), pooled RD was 2 more events per 100 patients treated with “high” dose PPI (95% CI from 1 fewer to 5 more events per 100 treated). We found moderate quality evidence suggesting no important difference between the two regimens with regards to length of hospital stay (mean difference (MD) 0.26 days; 95% CI -0.08 to 0.6 days) or blood transfusion requirements (MD 0.05 units; 95% CI -0.21 to 0.3 units). There was visual and statistical evidence of “inverse” publication bias for mortality (missing small studies with favourable outcomes for “high” dose), but not for any other outcome. The results were similar for all subgroup analyses (according to risk of bias, geographical location, route of administration for non-“high” dose regimens, continuous infusion vs. bolus administration for intravenous non-“high” regimens group), sensitivity analyses (restriction to patients who had EHT for high risk stigmata, use of different dose thresholds for comparative regimens) and post hoc analyses (inclusion of all studies (N = 22) that compared at least two PPI regimens with different cumulative 72 hour doses; restriction of the previous analysis to patients who had EHT for high risk stigmata). Meta-regression analysis did not show any statistically significant associations between treatment effect (for the outcomes of mortality, rebleeding and surgical intervention) and the three study-level factors that were assessed (geographical location (Asia versus not Asia), route of PPI administration (intravenous versus oral), within-study ratio among the 72-hour cumulative doses of the two PPI regimens).
AUTHORS' CONCLUSIONS: There is insufficient evidence for concluding superiority, inferiority or equivalence of high dose PPI treatment over lower doses in peptic ulcer bleeding.
Current guidelines recommend an intravenous bolus dose of a proton pump inhibitor (PPI) followed by continuous PPI infusion after endoscopic therapy in patients with high-risk bleeding ulcers. Substitution of intermittent PPI therapy, if similarly effective as bolus plus continuous-infusion PPI therapy, would decrease the PPI dose, costs, and resource use.
OBJECTIVE:
To compare intermittent PPI therapy with the currently recommended bolus plus continuous-infusion PPI regimen for reduction of ulcer rebleeding.
DATA SOURCES:
Searches included MEDLINE, EMBASE, and the Cochrane Central Register of Controlled Trials databases through December 2013; US and European gastroenterology meeting abstracts from 2009 to 2013; and bibliographies of systematic reviews.
STUDY SELECTION:
Randomized trials of patients with endoscopically treated high-risk bleeding ulcers (active bleeding, nonbleeding visible vessels, and adherent clots) comparing intermittent doses of PPIs and the currently recommended regimen (80-mg intravenous bolus dose of a PPI followed by an infusion of 8 mg/h for 72 hours).
DATA EXTRACTION AND SYNTHESIS:
Duplicate independent data extraction and risk-of-bias assessment were performed. Data were pooled using a fixed-effects model or a random effects model if statistical heterogeneity was present.
MAIN OUTCOMES AND MEASURES:
The primary outcome was rebleeding within 7 days; additional predefined outcomes included rebleeding within 3 and 30 days, need for urgent intervention, mortality, red blood cell transfusion, and length of hospital stay. The primary hypothesis, defined before initiation of the literature review, was that intermittent use of PPIs was noninferior to bolus plus continuous infusion of PPIs, with the noninferiority margin predefined as an absolute risk difference of 3%.
RESULTS:
The risk ratio of rebleeding within 7 days for intermittent vs bolus plus continuous infusion of PPIs was 0.72 (upper boundary of 1-sided 95% CI, 0.97) and the absolute risk difference was -2.64% (upper boundary of 1-sided 95% CI, -0.28%, which is well below the predefined noninferiority margin of 3%). Risk ratios for rebleeding within 30 days and 3 days, mortality, and urgent interventions were less than 1 and mean differences for blood transfusion and hospital length of stay were less than 0, indicating that no summary estimate showed an increased risk with intermittent therapy. The upper boundaries of 95% CIs for absolute risk differences were less than 1.50% for all predefined rebleeding outcomes.
CONCLUSIONS AND RELEVANCE:
Intermittent PPI therapy is comparable to the current guideline-recommended regimen of intravenous bolus plus a continuous infusion of PPIs in patients with endoscopically treated high-risk bleeding ulcers. Guidelines should be revised to recommend intermittent PPI therapy.
Systematic Review Question»Systematic review of interventions