BACKGROUND: Manipulation and mobilisation are commonly used to treat neck pain. This is an update of a Cochrane review first published in 2003, and previously updated in 2010.
OBJECTIVES: To assess the effects of manipulation or mobilisation alone compared wiith those of an inactive control or another active treatment on pain, function, disability, patient satisfaction, quality of life and global perceived effect in adults experiencing neck pain with or without radicular symptoms and cervicogenic headache (CGH) at immediate- to long-term follow-up. When appropriate, to assess the influence of treatment characteristics (i.e. technique, dosage), methodological quality, symptom duration and subtypes of neck disorder on treatment outcomes.
SEARCH METHODS: Review authors searched the following computerised databases to November 2014 to identify additional studies: the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE and the Cumulative Index to Nursing and Allied Health Literature (CINAHL). We also searched ClinicalTrials.gov, checked references, searched citations and contacted study authors to find relevant studies. We updated this search in June 2015, but these results have not yet been incorporated.
SELECTION CRITERIA: Randomised controlled trials (RCTs) undertaken to assess whether manipulation or mobilisation improves clinical outcomes for adults with acute/subacute/chronic neck pain.
DATA COLLECTION AND ANALYSIS: Two review authors independently selected studies, abstracted data, assessed risk of bias and applied Grades of Recommendation, Assessment, Development and Evaluation (GRADE) methods (very low, low, moderate, high quality). We calculated pooled risk ratios (RRs) and standardised mean differences (SMDs).
MAIN RESULTS: We included 51 trials (2920 participants, 18 trials of manipulation/mobilisation versus control; 34 trials of manipulation/mobilisation versus another treatment, 1 trial had two comparisons). Cervical manipulation versus inactive control: For subacute and chronic neck pain, a single manipulation (three trials, no meta-analysis, 154 participants, ranged from very low to low quality) relieved pain at immediate- but not short-term follow-up. Cervical manipulation versus another active treatment: For acute and chronic neck pain, multiple sessions of cervical manipulation (two trials, 446 participants, ranged from moderate to high quality) produced similar changes in pain, function, quality of life (QoL), global perceived effect (GPE) and patient satisfaction when compared with multiple sessions of cervical mobilisation at immediate-, short- and intermediate-term follow-up. For acute and subacute neck pain, multiple sessions of cervical manipulation were more effective than certain medications in improving pain and function at immediate- (one trial, 182 participants, moderate quality) and long-term follow-up (one trial, 181 participants, moderate quality). These findings are consistent for function at intermediate-term follow-up (one trial, 182 participants, moderate quality). For chronic CGH, multiple sessions of cervical manipulation (two trials, 125 participants, low quality) may be more effective than massage in improving pain and function at short/intermediate-term follow-up. Multiple sessions of cervical manipulation (one trial, 65 participants, very low quality) may be favoured over transcutaneous electrical nerve stimulation (TENS) for pain reduction at short-term follow-up. For acute neck pain, multiple sessions of cervical manipulation (one trial, 20 participants, very low quality) may be more effective than thoracic manipulation in improving pain and function at short/intermediate-term follow-up. Thoracic manipulation versus inactive control: Three trials (150 participants) using a single session were assessed at immediate-, short- and intermediate-term follow-up. At short-term follow-up, manipulation improved pain in participants with acute and subacute neck pain (five trials, 346 participants, moderate quality, pooled SMD -1.26, 95% confidence interval (CI) -1.86 to -0.66) and improved function (four trials, 258 participants, moderate quality, pooled SMD -1.40, 95% CI -2.24 to -0.55) in participants with acute and chronic neck pain. A funnel plot of these data suggests publication bias. These findings were consistent at intermediate follow-up for pain/function/quality of life (one trial, 111 participants, low quality). Thoracic manipulation versus another active treatment: No studies provided sufficient data for statistical analyses. A single session of thoracic manipulation (one trial, 100 participants, moderate quality) was comparable with thoracic mobilisation for pain relief at immediate-term follow-up for chronic neck pain. Mobilisation versus inactive control: Mobilisation as a stand-alone intervention (two trials, 57 participants, ranged from very low to low quality) may not reduce pain more than an inactive control. Mobilisation versus another active treatment: For acute and subacute neck pain, anterior-posterior mobilisation (one trial, 95 participants, very low quality) may favour pain reduction over rotatory or transverse mobilisations at immediate-term follow-up. For chronic CGH with temporomandibular joint (TMJ) dysfunction, multiple sessions of TMJ manual therapy (one trial, 38 participants, very low quality) may be more effective than cervical mobilisation in improving pain/function at immediate- and intermediate-term follow-up. For subacute and chronic neck pain, cervical mobilisation alone (four trials, 165 participants, ranged from low to very low quality) may not be different from ultrasound, TENS, acupuncture and massage in improving pain, function, QoL and participant satisfaction at immediate- and intermediate-term follow-up. Additionally, combining laser with manipulation may be superior to using manipulation or laser alone (one trial, 56 participants, very low quality).
AUTHORS' CONCLUSIONS: Although support can be found for use of thoracic manipulation versus control for neck pain, function and QoL, results for cervical manipulation and mobilisation versus control are few and diverse. Publication bias cannot be ruled out. Research designed to protect against various biases is needed. Findings suggest that manipulation and mobilisation present similar results for every outcome at immediate/short/intermediate-term follow-up. Multiple cervical manipulation sessions may provide better pain relief and functional improvement than certain medications at immediate/intermediate/long-term follow-up. Since the risk of rare but serious adverse events for manipulation exists, further high-quality research focusing on mobilisation and comparing mobilisation or manipulation versus other treatment options is needed to guide clinicians in their optimal treatment choices.
Objectives: Spinal manual therapy (SMT) is commonly used for treatment of musculoskeletal pain in the neck, upper back, or upper extremity. Some authors report a multi-system effect of SMT, including peripheral alterations in skin conductance and skin temperature, suggesting that SMT may initiate a sympathetic nervous system (SNS) response. The focus of this evidence-based review and meta-analysis is to evaluate the evidence of SNS responses and clinically relevant outcomes following SMT to the cervical or thoracic spine.
Methods: A systematic search used the terms: ‘manual therapy’, ‘SMT’, ‘spinal manipulation’, ‘mobilization’, ‘SNS’, ‘autonomic nervous system’, ‘neurophysiology’, ‘hypoalgesia’, ‘pain pathophysiology’, ‘cervical vertebrae’, ‘thoracic vertebrae’, ‘upper extremity’, and ‘neurodynamic test’. Data were extracted and withingroup and between-group effect sizes were calculated for outcomes of skin conductance, skin temperature, pain, and upper extremity range of motion (ROM) during upper limb neurodynamic tests (ULNTs).
Results: Eleven studies were identified. Statistically significant changes were seen with increased skin conductance, decreased skin temperature, decreased pain, and increased upper extremity ROM during ULNT.
Discussion: A mechanical stimulus at the cervical or thoracic spine can produce a SNS excitatory response (increased skin conductance and decreased skin temperature). Findings of reduced pain and increased ROM during ULNT provide support to the clinical relevance of SMT. This evidence points toward additional mechanisms underlying the therapeutic effect of SMT. The effect sizes are small to moderate and no longterm effects post-SMT were collected. Future research is needed to associate peripheral effects with a possible centrally-mediated response to SMT.
OBJECTIVE: Manipulation and mobilization are used to treat neck pain. However, little is known about the diagnostic criteria used to determine the need for manipulation in cases of neck pain. The primary aim of this study was to determine what diagnostic criteria are used to identify which neck pain sufferers should receive spinal manipulation or mobilization.
DESIGN: We systematically reviewed randomized controlled trials (RCT) involving mobilization or manipulation for neck pain. A data extraction pro forma was developed and trialled before two independent assessors extracted data sets from each RCT. A descriptive analysis was undertaken.
RESULTS: Thirty RCTs met the inclusion criteria. Acute and chronic "Mechanical" neck pain was the most common (43%) diagnosis at recruitment to the RCTs but some (10%) included patients with cervicogenic headache. Clinical criteria were used to determine the need for neck manipulation in over half (63%) of the RCTs. This usually involved exclusion of serious conditions, manual examination for tenderness on palpation, and/or altered vertebral motion in the neck or upper thoracic region which are known to lack validity. The remainder of the RCTs did not report a diagnostic strategy. All RCTs lacked detail descriptions of diagnostic criteria or interventions used.
CONCLUSIONS: This systematic review highlights the absence of reliable and valid diagnostic protocols to determine the need for spinal manipulation in persons presenting with non-serious, idiopathic, or whiplash-associated (grade II) neck pain. Guidelines requiring the reporting of valid diagnostic criteria are needed to improve the quality of RCTs concerning manual therapy.
Abstract: Objective: The purpose of this study was to complete a systematic review of manual and manipulative therapy (MMT) for common upper extremity pain and disorders including the temporomandibular joint (TMJ). Methods: A literature search was conducted using the Cumulative Index of Nursing Allied Health Literature, PubMed, Manual, Alternative, and Natural Therapy Index System (MANTIS), Physiotherapy Evidence Database (PEDro), Index to Chiropractic Literature, Google Scholar, and hand search inclusive of literature from January 1983 to March 5, 2012. Search limits included the English language and human studies along with MeSH terms such as manipulation, chiropractic, osteopathic, orthopedic, and physical therapies. Inclusion criteria required an extremity peripheral diagnosis (for upper extremity problems including the elbow, wrist, hand, finger and the (upper quadrant) temporomandibular joint) and MMT with or without multimodal therapy. Studies were assessed using the PEDro scale in conjunction with modified guidelines and systems. After synthesis and considered judgment scoring was complete, evidence grades of “A, B, C and I” were applied. Results: Out of 764 citations reviewed, 129 studies were deemed possibly to probably useful and/or relevant to develop expert consensus. Out of 81 randomized controlled or clinical trials, 35 were included. Five controlled or clinical trials were located and 4 were included. Fifty case series, reports and/or single-group pre-test post-test prospective case series were located with 32 included. There is Fair (B) level of evidence for MMT to specific joints and the full kinetic chain combined generally with exercise and/or multimodal therapy for lateral epicondylopathy, carpal tunnel syndrome, and temporomandibular joint disorders, in the short term. Conclusion: The information from this study will help guide practitioners in the use of MMT, soft tissue technique, exercise, and/or multimodal therapy for the treatment of a variety of upper extremity complaints in the context of the hierarchy of published and available evidence.
BACKGROUND: Non-surgical treatment, including exercises and mobilisation, has been offered to people experiencing mild to moderate symptoms arising from carpal tunnel syndrome (CTS). However, the effectiveness and duration of benefit from exercises and mobilisation for this condition remain unknown.
OBJECTIVES: To review the efficacy and safety of exercise and mobilisation interventions compared with no treatment, a placebo or another non-surgical intervention in people with CTS.
SEARCH METHODS: We searched the Cochrane Neuromuscular Disease Group Specialised Register (10 January 2012), CENTRAL (2011, Issue 4), MEDLINE (January 1966 to December 2011), EMBASE (January 1980 to January 2012), CINAHL Plus (January 1937 to January 2012), and AMED (January 1985 to January 2012).
SELECTION CRITERIA: Randomised or quasi-randomised controlled trials comparing exercise or mobilisation interventions with no treatment, placebo or another non-surgical intervention in people with CTS.
DATA COLLECTION AND ANALYSIS: Two review authors independently assessed searches and selected trials for inclusion, extracted data and assessed risk of bias of the included studies. We calculated risk ratios (RR) and mean differences (MD) with 95% confidence intervals (CIs) for primary and secondary outcomes of the review. We collected data on adverse events from included studies.
MAIN RESULTS: Sixteen studies randomising 741 participants with CTS were included in the review. Two compared a mobilisation regimen to a no treatment control, three compared one mobilisation intervention (for example carpal bone mobilisation) to another (for example soft tissue mobilisation), nine compared nerve mobilisation delivered as part of a multi-component intervention to another non-surgical intervention (for example splint or therapeutic ultrasound), and three compared a mobilisation intervention other than nerve mobilisation (for example yoga or chiropractic treatment) to another non-surgical intervention. The risk of bias of the included studies was low in some studies and unclear or high in other studies, with only three explicitly reporting that the allocation sequence was concealed, and four reporting blinding of participants. The studies were heterogeneous in terms of the interventions delivered, outcomes measured and timing of outcome assessment, therefore, we were unable to pool results across studies. Only four studies reported the primary outcome of interest, short-term overall improvement (any measure in which patients indicate the intensity of their complaints compared to baseline, for example, global rating of improvement, satisfaction with treatment, within three months post-treatment). However, of these, only three fully reported outcome data sufficient for inclusion in the review. One very low quality trial with 14 participants found that all participants receiving either neurodynamic mobilisation or carpal bone mobilisation and none in the no treatment group reported overall improvement (RR 15.00, 95% CI 1.02 to 220.92), though the precision of this effect estimate is very low. One low quality trial with 22 participants found that the chance of being 'satisfied' or 'very satisfied' with treatment was 24% higher for participants receiving instrument-assisted soft tissue mobilisation compared to standard soft tissue mobilisation (RR 1.24, 95% CI 0.89 to 1.75), though participants were not blinded and it was unclear if the allocation sequence was concealed. Another very low-quality trial with 26 participants found that more CTS-affected wrists receiving nerve gliding exercises plus splint plus activity modification had no pathologic finding on median and ulnar nerve distal sensory latency assessment at the end of treatment than wrists receiving splint plus activity modification alone (RR 1.26, 95% CI 0.69 to 2.30). However, a unit of analysis error occurred in this trial, as the correlation between wrists in participants with bilateral CTS was not accounted for. Only two studies measured adverse effects, so more data are required before any firm conclusions on the safety of exercise and mobilisation interventions can be made. In general, the results of secondary outcomes of the review (short- and long-term improvement in CTS symptoms, functional ability, health-related quality of life, neurophysiologic parameters, and the need for surgery) for most comparisons had 95% CIs which incorporated effects in either direction.
AUTHORS' CONCLUSIONS: There is limited and very low quality evidence of benefit for all of a diverse collection of exercise and mobilisation interventions for CTS. People with CTS who indicate a preference for exercise or mobilisation interventions should be informed of the limited evidence of effectiveness and safety of this intervention by their treatment provider. Until more high quality randomised controlled trials assessing the effectiveness and safety of various exercise and mobilisation interventions compared to other non-surgical interventions are undertaken, the decision to provide this type of non-surgical intervention to people with CTS should be based on the clinician's expertise in being able to deliver these treatments and patient's preferences.
Neural mobilization is a treatment modality used in relation to pathologies of the nervous system. It has been suggested that neural mobilization is an effective treatment modality, although support of this suggestion is primarily anecdotal. The purpose of this paper was to provide a systematic review of the literature pertaining to the therapeutic efficacy of neural mobilization. A search to identify randomized controlled trials investigating neural mobilization was conducted using the key words neural mobilisation/mobilization, nerve mobilisation/mobilization, neural manipulative physical therapy, physical therapy, neural/nerve glide, nerve glide exercises, nerve/neural treatment, nerve/neural stretching, neurodynamics, and nerve/neural physiotherapy. The titles and abstracts of the papers identified were reviewed to select papers specifically detailing neural mobilization as a treatment modality. The PEDro scale, a systematic tool used to critique RCTs and grade methodological quality, was used to assess these trials. Methodological assessment allowed an analysis of research investigating therapeutic efficacy of neural mobilization. Ten randomized clinical trials (discussed in 11 retrieved articles) were identified that discussed the therapeutic effect of neural mobilization. This review highlights the lack in quantity and quality of the available research. Qualitative analysis of these studies revealed that there is only limited evidence to support the use of neural mobilization. Future research needs to re-examine the application of neural mobilization with use of more homogeneous study designs and pathologies; in addition, it should standardize the neural mobilization interventions used in the study.
Lateral epicondylalgia is a commonly encountered musculoskeletal complaint. Currently, there is no agreement regarding the exact underlying pathoanatomical cause or the most effective management strategy. Various forms of joint manipulation have been recommended as treatment. The purpose of this study was to systematically review available literature regarding the effectiveness of manipulation in treating lateral epicondylalgia. A comprehensive search of Medline, CINAHL, health Source, SPORTDiscus, and the Physiotherapy Evidence Database ending in November 2007 was conducted. Thirteen studies, both randomized and non-randomized clinical trials, met inclusion criteria. Articles were assessed for quality by one reviewer using the 10-point PEDro scale. Quality scores ranged from 1-8 with a mean score of 5.15 ± 1.85. This score represented fair quality overall; however, trends indicated the presence of consistent methodological flaws. Specifically, no study achieved successful blinding of the patient or treating therapist, and less than 50% used a blinded outcome assessor. Additionally, studies varied significantly in terms of outcome measures, follow-up, and comparison treatments, thus making comparing results across studies difficult. Results of this review support the use of Mulligan's mobilization with movement in providing immediate, short-, and long-term benefits. In addition, positive results were demonstrated with manipulative therapy directed at the cervical spine, although data regarding long-term effects were limited. Currently, limited evidence exists to support a synthesis of any particular technique whether directed at the elbow or cervical spine. Overall, this review identified the need for further high-quality studies using larger sample sizes, valid functional outcome measures, and longer follow-up periods.
OBJECTIVE : To assess the effectiveness of conservative therapy in carpal tunnel syndrome. Data sources : A computer-aided search of MEDLINE and the Cochrane Collaboration was conducted for randomized controlled trials (RCTs) from January 1985 to May 2006. Review methods : RCTs were included if: (1) the patients, with clinically and electrophysiologically confirmed carpal tunnel syndrome, had not previously undergone surgical release, (2) the efficacy of one or more conservative treatment options was evaluated, (3) the study was designed as a randomized controlled trial. Two reviewers independently selected the studies and performed data extraction using a standardized form. In order to assess the methodological quality, the criteria list of the Cochrane Back Review Group for systematic reviews was applied. The different treatment methods were grouped (local injections, oral therapies, physical therapies, therapeutic exercises and splints). RESULTS : Thirty-three RCTs were included in the review. The studies were analysed to determine the strength of the available evidence for the efficacy of the treatment. Our review shows that: (1) locally injected steroids produce a significant but temporary improvement, (2) vitamin B6 is ineffective, (3) steroids are better than non-steroidal anti-inflammatory drugs (NSAIDs) and diuretics, but they can produce side-effects, (4) ultrasound is effective while laser therapy shows variable results, (5) exercise therapy is not effective, (6) splints are effective, especially if used full-time. CONCLUSION : There is: (1) strong evidence (level 1) on efficacy of local and oral steroids; (2) moderate evidence (level 2) that vitamin B6 is ineffective and splints are effective and (3) limited or conflicting evidence (level 3) that NSAIDs, diuretics, yoga, laser and ultrasound are effective whereas exercise therapy and botulinum toxin B injection are ineffective.
Manipulation and mobilisation are commonly used to treat neck pain. This is an update of a Cochrane review first published in 2003, and previously updated in 2010.
OBJECTIVES:
To assess the effects of manipulation or mobilisation alone compared wiith those of an inactive control or another active treatment on pain, function, disability, patient satisfaction, quality of life and global perceived effect in adults experiencing neck pain with or without radicular symptoms and cervicogenic headache (CGH) at immediate- to long-term follow-up. When appropriate, to assess the influence of treatment characteristics (i.e. technique, dosage), methodological quality, symptom duration and subtypes of neck disorder on treatment outcomes.
SEARCH METHODS:
Review authors searched the following computerised databases to November 2014 to identify additional studies: the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE and the Cumulative Index to Nursing and Allied Health Literature (CINAHL). We also searched ClinicalTrials.gov, checked references, searched citations and contacted study authors to find relevant studies. We updated this search in June 2015, but these results have not yet been incorporated.
SELECTION CRITERIA:
Randomised controlled trials (RCTs) undertaken to assess whether manipulation or mobilisation improves clinical outcomes for adults with acute/subacute/chronic neck pain.
DATA COLLECTION AND ANALYSIS:
Two review authors independently selected studies, abstracted data, assessed risk of bias and applied Grades of Recommendation, Assessment, Development and Evaluation (GRADE) methods (very low, low, moderate, high quality). We calculated pooled risk ratios (RRs) and standardised mean differences (SMDs).
MAIN RESULTS:
We included 51 trials (2920 participants, 18 trials of manipulation/mobilisation versus control; 34 trials of manipulation/mobilisation versus another treatment, 1 trial had two comparisons). Cervical manipulation versus inactive control: For subacute and chronic neck pain, a single manipulation (three trials, no meta-analysis, 154 participants, ranged from very low to low quality) relieved pain at immediate- but not short-term follow-up. Cervical manipulation versus another active treatment: For acute and chronic neck pain, multiple sessions of cervical manipulation (two trials, 446 participants, ranged from moderate to high quality) produced similar changes in pain, function, quality of life (QoL), global perceived effect (GPE) and patient satisfaction when compared with multiple sessions of cervical mobilisation at immediate-, short- and intermediate-term follow-up. For acute and subacute neck pain, multiple sessions of cervical manipulation were more effective than certain medications in improving pain and function at immediate- (one trial, 182 participants, moderate quality) and long-term follow-up (one trial, 181 participants, moderate quality). These findings are consistent for function at intermediate-term follow-up (one trial, 182 participants, moderate quality). For chronic CGH, multiple sessions of cervical manipulation (two trials, 125 participants, low quality) may be more effective than massage in improving pain and function at short/intermediate-term follow-up. Multiple sessions of cervical manipulation (one trial, 65 participants, very low quality) may be favoured over transcutaneous electrical nerve stimulation (TENS) for pain reduction at short-term follow-up. For acute neck pain, multiple sessions of cervical manipulation (one trial, 20 participants, very low quality) may be more effective than thoracic manipulation in improving pain and function at short/intermediate-term follow-up. Thoracic manipulation versus inactive control: Three trials (150 participants) using a single session were assessed at immediate-, short- and intermediate-term follow-up. At short-term follow-up, manipulation improved pain in participants with acute and subacute neck pain (five trials, 346 participants, moderate quality, pooled SMD -1.26, 95% confidence interval (CI) -1.86 to -0.66) and improved function (four trials, 258 participants, moderate quality, pooled SMD -1.40, 95% CI -2.24 to -0.55) in participants with acute and chronic neck pain. A funnel plot of these data suggests publication bias. These findings were consistent at intermediate follow-up for pain/function/quality of life (one trial, 111 participants, low quality). Thoracic manipulation versus another active treatment: No studies provided sufficient data for statistical analyses. A single session of thoracic manipulation (one trial, 100 participants, moderate quality) was comparable with thoracic mobilisation for pain relief at immediate-term follow-up for chronic neck pain. Mobilisation versus inactive control: Mobilisation as a stand-alone intervention (two trials, 57 participants, ranged from very low to low quality) may not reduce pain more than an inactive control. Mobilisation versus another active treatment: For acute and subacute neck pain, anterior-posterior mobilisation (one trial, 95 participants, very low quality) may favour pain reduction over rotatory or transverse mobilisations at immediate-term follow-up. For chronic CGH with temporomandibular joint (TMJ) dysfunction, multiple sessions of TMJ manual therapy (one trial, 38 participants, very low quality) may be more effective than cervical mobilisation in improving pain/function at immediate- and intermediate-term follow-up. For subacute and chronic neck pain, cervical mobilisation alone (four trials, 165 participants, ranged from low to very low quality) may not be different from ultrasound, TENS, acupuncture and massage in improving pain, function, QoL and participant satisfaction at immediate- and intermediate-term follow-up. Additionally, combining laser with manipulation may be superior to using manipulation or laser alone (one trial, 56 participants, very low quality).
AUTHORS' CONCLUSIONS:
Although support can be found for use of thoracic manipulation versus control for neck pain, function and QoL, results for cervical manipulation and mobilisation versus control are few and diverse. Publication bias cannot be ruled out. Research designed to protect against various biases is needed. Findings suggest that manipulation and mobilisation present similar results for every outcome at immediate/short/intermediate-term follow-up. Multiple cervical manipulation sessions may provide better pain relief and functional improvement than certain medications at immediate/intermediate/long-term follow-up. Since the risk of rare but serious adverse events for manipulation exists, further high-quality research focusing on mobilisation and comparing mobilisation or manipulation versus other treatment options is needed to guide clinicians in their optimal treatment choices.