Estimation of the dose of electronic cigarette chemicals deposited in human airways through passive vaping.

Authors
Category Primary study
JournalJournal of exposure science & environmental epidemiology
Year 2021
BACKGROUND: Existing studies on the health effects of e-cigarettes focused on e-cigarette users themselves. To study the corresponding effects on passive vapers, it is crucial to quantify e-cigarette chemicals deposited in their airways. OBJECTIVE: This study proposed an innovative approach to estimate the deposited dose of e-cigarette chemicals in the passive vapers' airways. The effect of the distance between active and passive vapers on the deposited dose was also examined. METHODS: The chemical constituent analysis was conducted to detect Nicotine and flavoring agents in e-cigarette aerosol. The Mobile Aerosol Lung Deposition Apparatus (MALDA) was employed to conduct aerosol respiratory deposition experiments in real-life settings to generate real-time data. RESULTS: For e-cigarette aerosol in the ultrafine particle regime, the deposited doses in the alveolar region were on average 3.2 times higher than those in the head-to-TB airways, and the deposited dose in the passive vaper's airways increased when being closer to the active vaper. SIGNIFICANCE: With prolonged exposure and close proximity to active vapers, passive vapers may be at risk for potential health effects of harmful e-cigarette chemicals. The methodology developed in this study has laid the groundwork for future research on exposure assessment and health risk analysis for passive vaping.
Epistemonikos ID: 58ef75255a2880548a30c2b8d399ee01b64022be
First added on: Jan 26, 2024