Systematic reviews including this primary study

loading
6 articles (6 References) loading Revert Studify

Systematic review

Unclassified

Journal BMJ (Clinical research ed.)
Year 2013
Loading references information
OBJECTIVES: To identify factors that differentiate between effective and ineffective computerised clinical decision support systems in terms of improvements in the process of care or in patient outcomes. DESIGN: Meta-regression analysis of randomised controlled trials. DATA SOURCES: A database of features and effects of these support systems derived from 162 randomised controlled trials identified in a recent systematic review. Trialists were contacted to confirm the accuracy of data and to help prioritise features for testing. MAIN OUTCOME MEASURES: "Effective" systems were defined as those systems that improved primary (or 50% of secondary) reported outcomes of process of care or patient health. Simple and multiple logistic regression models were used to test characteristics for association with system effectiveness with several sensitivity analyses. RESULTS: Systems that presented advice in electronic charting or order entry system interfaces were less likely to be effective (odds ratio 0.37, 95% confidence interval 0.17 to 0.80). Systems more likely to succeed provided advice for patients in addition to practitioners (2.77, 1.07 to 7.17), required practitioners to supply a reason for over-riding advice (11.23, 1.98 to 63.72), or were evaluated by their developers (4.35, 1.66 to 11.44). These findings were robust across different statistical methods, in internal validation, and after adjustment for other potentially important factors. CONCLUSIONS: We identified several factors that could partially explain why some systems succeed and others fail. Presenting decision support within electronic charting or order entry systems are associated with failure compared with other ways of delivering advice. Odds of success were greater for systems that required practitioners to provide reasons when over-riding advice than for systems that did not. Odds of success were also better for systems that provided advice concurrently to patients and practitioners. Finally, most systems were evaluated by their own developers and such evaluations were more likely to show benefit than those conducted by a third party.

Systematic review

Unclassified

Journal Implementation science : IS
Year 2011
Loading references information
BACKGROUND: Acute medical care often demands timely, accurate decisions in complex situations. Computerized clinical decision support systems (CCDSSs) have many features that could help. However, as for any medical intervention, claims that CCDSSs improve care processes and patient outcomes need to be rigorously assessed. The objective of this review was to systematically review the effects of CCDSSs on process of care and patient outcomes for acute medical care. METHODS: We conducted a decision-maker-researcher partnership systematic review. MEDLINE, EMBASE, Evidence-Based Medicine Reviews databases (Cochrane Database of Systematic Reviews, DARE, ACP Journal Club, and others), and the Inspec bibliographic database were searched to January 2010, in all languages, for randomized controlled trials (RCTs) of CCDSSs in all clinical areas. We included RCTs that evaluated the effect on process of care or patient outcomes of a CCDSS used for acute medical care compared with care provided without a CCDSS. A study was considered to have a positive effect (i.e., CCDSS showed improvement) if at least 50% of the relevant study outcomes were statistically significantly positive. RESULTS: Thirty-six studies met our inclusion criteria for acute medical care. The CCDSS improved process of care in 63% (22/35) of studies, including 64% (9/14) of medication dosing assistants, 82% (9/11) of management assistants using alerts/reminders, 38% (3/8) of management assistants using guidelines/algorithms, and 67% (2/3) of diagnostic assistants. Twenty studies evaluated patient outcomes, of which three (15%) reported improvements, all of which were medication dosing assistants. CONCLUSION: The majority of CCDSSs demonstrated improvements in process of care, but patient outcomes were less likely to be evaluated and far less likely to show positive results.

Systematic review

Unclassified

Journal Implementation science : IS
Year 2011
Loading references information
BACKGROUND: Computerized clinical decision support systems (CCDSSs) for drug therapy management are designed to promote safe and effective medication use. Evidence documenting the effectiveness of CCDSSs for improving drug therapy is necessary for informed adoption decisions. The objective of this review was to systematically review randomized controlled trials assessing the effects of CCDSSs for drug therapy management on process of care and patient outcomes. We also sought to identify system and study characteristics that predicted benefit. METHODS: We conducted a decision-maker-researcher partnership systematic review. We updated our earlier reviews (1998, 2005) by searching MEDLINE, EMBASE, EBM Reviews, Inspec, and other databases, and consulting reference lists through January 2010. Authors of 82% of included studies confirmed or supplemented extracted data. We included only randomized controlled trials that evaluated the effect on process of care or patient outcomes of a CCDSS for drug therapy management compared to care provided without a CCDSS. A study was considered to have a positive effect (i.e., CCDSS showed improvement) if at least 50% of the relevant study outcomes were statistically significantly positive. RESULTS: Sixty-five studies met our inclusion criteria, including 41 new studies since our previous review. Methodological quality was generally high and unchanged with time. CCDSSs improved process of care performance in 37 of the 59 studies assessing this type of outcome (64%, 57% of all studies). Twenty-nine trials assessed patient outcomes, of which six trials (21%, 9% of all trials) reported improvements. CONCLUSIONS: CCDSSs inconsistently improved process of care measures and seldomly improved patient outcomes. Lack of clear patient benefit and lack of data on harms and costs preclude a recommendation to adopt CCDSSs for drug therapy management.

Systematic review

Unclassified

Journal BMC medical informatics and decision making
Year 2009
Loading references information
Background. Computerized decision support systems (CDSS) are believed to have the potential to improve the quality of health care delivery, although results from high quality studies have been mixed. We conducted a systematic review to evaluate whether certain features of prescribing decision support systems (RxCDSS) predict successful implementation, change in provider behaviour, and change in patient outcomes. Methods. A literature search of Medline, EMBASE, CINAHL and INSPEC databases (earliest entry to June 2008) was conducted to identify randomized controlled trials involving RxCDSS. Each citation was independently assessed by two reviewers for outcomes and 28 predefined system features. Statistical analysis of associations between system features and success of outcomes was planned. Results. Of 4534 citations returned by the search, 41 met the inclusion criteria. Of these, 37 reported successful system implementations, 25 reported success at changing health care provider behaviour, and 5 noted improvements in patient outcomes. A mean of 17 features per study were mentioned. The statistical analysis could not be completed due primarily to the small number of studies and lack of diversity of outcomes. Descriptive analysis did not confirm any feature to be more prevalent in successful trials relative to unsuccessful ones for implementation, provider behaviour or patient outcomes. Conclusion. While RxCDSSs have the potential to change health care provider behaviour, very few high quality studies show improvement in patient outcomes. Furthermore, the features of the RxCDSS associated with success (or failure) are poorly described, thus making it difficult for system design and implementation to improve.

Systematic review

Unclassified

Journal JAMA : the journal of the American Medical Association
Year 2005
Loading references information
CONTEXT: Developers of health care software have attributed improvements in patient care to these applications. As with any health care intervention, such claims require confirmation in clinical trials. OBJECTIVES: To review controlled trials assessing the effects of computerized clinical decision support systems (CDSSs) and to identify study characteristics predicting benefit. DATA SOURCES: We updated our earlier reviews by searching the MEDLINE, EMBASE, Cochrane Library, Inspec, and ISI databases and consulting reference lists through September 2004. Authors of 64 primary studies confirmed data or provided additional information. STUDY SELECTION: We included randomized and nonrandomized controlled trials that evaluated the effect of a CDSS compared with care provided without a CDSS on practitioner performance or patient outcomes. DATA EXTRACTION: Teams of 2 reviewers independently abstracted data on methods, setting, CDSS and patient characteristics, and outcomes. DATA SYNTHESIS: One hundred studies met our inclusion criteria. The number and methodologic quality of studies improved over time. The CDSS improved practitioner performance in 62 (64%) of the 97 studies assessing this outcome, including 4 (40%) of 10 diagnostic systems, 16 (76%) of 21 reminder systems, 23 (62%) of 37 disease management systems, and 19 (66%) of 29 drug-dosing or prescribing systems. Fifty-two trials assessed 1 or more patient outcomes, of which 7 trials (13%) reported improvements. Improved practitioner performance was associated with CDSSs that automatically prompted users compared with requiring users to activate the system (success in 73% of trials vs 47%; P = .02) and studies in which the authors also developed the CDSS software compared with studies in which the authors were not the developers (74% success vs 28%; respectively, P = .001). CONCLUSIONS: Many CDSSs improve practitioner performance. To date, the effects on patient outcomes remain understudied and, when studied, inconsistent.

Systematic review

Unclassified

Journal BMJ (Clinical research ed.)
Year 2005
Loading references information
OBJECTIVE: To identify features of clinical decision support systems critical for improving clinical practice. DESIGN: Systematic review of randomised controlled trials. DATA SOURCES: Literature searches via Medline, CINAHL, and the Cochrane Controlled Trials Register up to 2003; and searches of reference lists of included studies and relevant reviews. STUDY SELECTION: Studies had to evaluate the ability of decision support systems to improve clinical practice. DATA EXTRACTION: Studies were assessed for statistically and clinically significant improvement in clinical practice and for the presence of 15 decision support system features whose importance had been repeatedly suggested in the literature. RESULTS: Seventy studies were included. Decision support systems significantly improved clinical practice in 68% of trials. Univariate analyses revealed that, for five of the system features, interventions possessing the feature were significantly more likely to improve clinical practice than interventions lacking the feature. Multiple logistic regression analysis identified four features as independent predictors of improved clinical practice: automatic provision of decision support as part of clinician workflow (P < 0.00001), provision of recommendations rather than just assessments (P = 0.0187), provision of decision support at the time and location of decision making (P = 0.0263), and computer based decision support (P = 0.0294). Of 32 systems possessing all four features, 30 (94%) significantly improved clinical practice. Furthermore, direct experimental justification was found for providing periodic performance feedback, sharing recommendations with patients, and requesting documentation of reasons for not following recommendations. CONCLUSIONS: Several features were closely correlated with decision support systems' ability to improve patient care significantly. Clinicians and other stakeholders should implement clinical decision support systems that incorporate these features whenever feasible and appropriate.