OBJECTIVE Deep brain stimulation (DBS) is effective in the management of patients with advanced Parkinson's disease(PD). While both the globus pallidus pars interna (GPi) and the subthalamic nucleus (STN) are accepted targets,their relative efficacy in randomized controlled trials (RCTs) has not been established beyond 12 months. The objectiveof this study was to conduct a meta-analysis of RCTs to compare outcomes among adults with PD undergoing DBS ofGPi or STN at various time points, including 36 months of follow-up.METHODS The MEDLINE, Embase, CENTRAL, Web of Science, and CINAHL databases were searched. Registriesfor clinical trials, selected conference proceedings, and the table of contents for selected journals were also searched.Screens were conducted independently and in duplicate. Among the 623 studies initially identified (615 through databasesearch, 7 through manual review of bibliographies, and 1 through a repeat screen of literature prior to submission), 19underwent full-text review; 13 of these were included in the quantitative meta-analysis. Data were extracted independentlyand in duplicate. The Cochrane Collaboration tool was used to assess the risk of bias. The GRADE evidenceprofile tool was used to assess the quality of the evidence. Motor scores, medication dosage reduction, activities of dailyliving, depression, dyskinesias, and adverse events were compared. The influence of disease duration (a priori) and theproportion of male patients within a study (post hoc) were explored as potential subgroups.RESULTS Thirteen studies (6 original cohorts) were identified. No difference in motor scores or activities of daily livingwas identified at 36 months. Medications were significantly reduced with STN stimulation (5 studies, weighted mean difference[WMD] -365.46, 95% CI -599.48 to -131.44, p = 0.002). Beck Depression Inventory scores were significantlybetter with GPi stimulation (3 studies; WMD 2.53, 95% CI 0.99-4.06 p = 0.001). The motor benefits of GPi and STN DBSfor PD are similar.CONCLUSIONS The motor benefits achieved with GPi and STN DBS for PD are similar. DBS of STN allows for agreater reduction of medication, but not as significant an advantage as DBS of GPi with respect to mood. This differenceis sustained at 36 months. Further long-term studies are necessary.
QUESTION 1: Is bilateral subthalamic nucleus deep brain stimulation (STN DBS) more, less, or as effective as bilateral globus pallidus internus deep brain stimulation (GPi DBS) in treating motor symptoms of Parkinson's disease, as measured by improvements in Unified Parkinson's Disease Rating Scale, part III (UPDRS-III) scores?
RECOMMENDATION: Given that bilateral STN DBS is at least as effective as bilateral GPi DBS in treating motor symptoms of Parkinson's disease (as measured by improvements in UPDRS-III scores), consideration can be given to the selection of either target in patients undergoing surgery to treat motor symptoms. (Level I).
QUESTION 2: Is bilateral STN DBS more, less, or as effective as bilateral GPi DBS in allowing reduction of dopaminergic medication in Parkinson's disease?
RECOMMENDATION: When the main goal of surgery is reduction of dopaminergic medications in a patient with Parkinson's disease, then bilateral STN DBS should be performed instead of GPi DBS. (Level I).
QUESTION 3: Is bilateral STN DBS more, less, or as effective as bilateral GPi DBS in treating dyskinesias associated with Parkinson's disease?
RECOMMENDATION: There is insufficient evidence to make a generalizable recommendation regarding the target selection for reduction of dyskinesias. However, when the reduction of medication is not anticipated and there is a goal to reduce the severity of "on" medication dyskinesias, the GPi should be targeted. (Level I).
QUESTION 4: Is bilateral STN DBS more, less, or as effective as bilateral GPi DBS in improving quality of life measures in Parkinson's disease?
RECOMMENDATION: When considering improvements in quality of life in a patient undergoing DBS for Parkinson's disease, there is no basis to recommend bilateral DBS in 1 target over the other. (Level I).
QUESTION 5: Is bilateral STN DBS associated with greater, lesser, or a similar impact on neurocognitive function than bilateral GPi DBS in Parkinson disease?
RECOMMENDATION: If there is significant concern about cognitive decline, particularly in regards to processing speed and working memory in a patient undergoing DBS, then the clinician should consider using GPi DBS rather than STN DBS, while taking into consideration other goals of surgery. (Level I).
QUESTION 6: Is bilateral STN DBS associated with a higher, lower, or similar risk of mood disturbance than GPi DBS in Parkinson's disease?
RECOMMENDATION: If there is significant concern about the risk of depression in a patient undergoing DBS, then the clinician should consider using pallidal rather than STN stimulation, while taking into consideration other goals of surgery. (Level I).
QUESTION 7: Is bilateral STN DBS associated with a higher, lower, or similar risk of adverse events compared to GPi DBS in Parkinson's disease?
RECOMMENDATION: There is insufficient evidence to recommend bilateral DBS in 1 target over the other in order to minimize the risk of surgical adverse events. The full guideline can be found at: https://www.cns.org/guidelines/deep-brain-stimulation-parkinsons-disease.
Deep brain stimulation (DBS) is the surgical procedure of choice for patients with advanced Parkinson disease (PD). We aim to evaluate the efficacy of GPi (globus pallidus internus), STN (subthalamic nucleus)-DBS and medical therapy for PD. We conducted a systematic review and multiple-treatments meta-analysis to investigate the efficacy of neurostimulation and medical therapy for PD patients. Sixteen eligible studies were included in this analysis. We pooled the whole data and found obvious difference between GPi-DBS versus medical therapy and STN-DBS versus medical therapy in terms of UPDRS scores (Unified Parkinson's Disease Rating Scale). Meanwhile, we found GPi-DBS had the similar efficacy on the UPDRS scores when compared with STN-DBS. What is more, quality of life, measured by PDQ-39 (Parkinson's disease Questionnaire) showed greater improvement after GPi-DBS than STN-DBS. Five studies showed STN-DBS was more effective for reduction in medication than GPi-DBS. Overall, either GPi-DBS or STN-DBS was an effective technique to control PD patients' symptoms and improved their functionality and quality of life. Meanwhile, the UPDRS scores measuring parkinsonian symptoms revealed no significant difference between GPi-DBS and STN-DBS. STN-DBS was more effective for reduction in medication than GPi-DBS. Alternatively, GPi-DBS was more effective for improving the PDQ-39 score than STN-DBS.
Deep brain stimulation (DBS) is the surgical procedure for patients with advanced Parkinson's disease. Globus pallidus internus (GPi) and subthalamic nucleus (STN) are the most targeted locations for the procedure. To investigate the variable efficiencies for the two different locations, we conducted a meta-analysis to compare both stimulation sites. MATERIALS AND METHODS: A systematic search was performed in PubMed, Embase, and the Cochrane Library databases. Randomized controlled trials comparing the efficacies of GPi and STN DBS were included. Clinical outcomes of motor function, nonmotor function, and quality of life (QOL) were collected for the meta-analysis. RESULTS: Ten eligible trials with 1,034 patients were included in the analysis. Unified Parkinson's disease rating scale III (UPDRS-III) scores were collected at 6, 12, and 24 months postsurgery separately to assess the motor function of the patients. A statistically significant effect in favor of the GPi DBS was obtained in the off-medication/on-stimulation phase of UPDRS-III at 12 months (mean difference [MD] =6.87, 95% confidence interval [95% CI]: 3.00-10.74, P=0.57, I (2)=0%). However, GPi DBS showed an opposite result at 24 months (MD =-2.46, 95% CI: -4.91 to -0.02, P=0.05, I (2)=0%). In the on-medication/on-stimulation phase, GPi DBS obtained a worse outcome compared with STN DBS (MD =-2.90, 95% CI: -5.71 to -0.09, P=0.05, I (2)=0%). Compared with STN DBS, increased dosage of levodopa equivalent doses was needed in GPi DBS (standardized MD =0.60, 95% CI: 0.46-0.74, P<0.00001, I (2)=24%). Meanwhile, Beck Depression Inventory II scores demonstrated that STN has a better performance (standardized MD =-0.31, 95% CI: -0.51 to -0.12, P=0.002, I (2)=0%). As for neurocognitive phase postsurgery, GPi DBS showed better performance in three of the nine tests, especially in verbal fluency. Use of GPi DBS was associated with a greater effect in eight of the nine subscales of QOL. CONCLUSION: GPi and STN DBS significantly improve advanced Parkinson's patients' symptoms, functionality, and QOL. Variable therapeutic efficiencies were observed in both procedures, GPi and STN DBS. GPi DBS allowed greater recovery of verbal fluency and provided greater relief of depression symptoms. Better QOL was also obtained using GPi DBS. Meanwhile, GPi DBS was also associated with increased dosage of levodopa equivalent doses. The question regarding which target is superior remained open for discussion. An understanding of the target selection still depends on individual symptoms, neurocognitive/mood status, therapeutic goals of DBS (eg, levodopa reduction), and surgical expertise.
BACKGROUND: Deep brain stimulation (DBS) of either the subthalamic nucleus (STN) or the globus pallidus interna (GPi) can reduce motor symptoms in patients with Parkinson's disease (PD) and improve their quality of life. However, the effects of STN DBS and GPi DBS on cognitive functions and their psychiatric effects remain controversial. The present meta-analysis was therefore performed to clarify these issues. METHODS: We searched the PUBMED, EMBASE, and the Cochrane Central Register of Controlled Trials databases. Other sources, including internet-based clinical trial registries and grey literature sources, were also searched. After searching the literature, two investigators independently performed literature screens to assess the quality of the included trials and to extract the data. The outcomes included the effects of STN DBS and GPi DBS on multiple cognitive domains, depression, anxiety, and quality of life. RESULTS: Seven articles related to four randomized controlled trials that included 521 participants were incorporated into the present meta-analysis. Compared with GPi DBS, STN DBS was associated with declines in selected cognitive domains after surgery, including attention, working memory and processing speed, phonemic fluency, learning and memory, and global cognition. However, there were no significant differences in terms of quality of life or psychiatric effects, such as depression and anxiety, between the two groups. CONCLUSIONS: A selective decline in frontal-subcortical cognitive functions is observed after STN DBS in comparison with GPi DBS, which should not be ignored in the target selection for DBS treatment in PD patients. In addition, compared to GPi DBS, STN DBS does not affect depression, anxiety, and quality of life.
BACKGROUND: Parkinson’s disease (PD) is a common neurodegenerative disorder that affects many people every year. Deep brain stimulation (DBS) is an effective nonpharmacological method to treat PD motor symptoms. This meta-analysis was conducted to evaluate the efficacy of subthalamic nucleus (STN)-DBS versus globus pallidus internus (GPi)-DBS in treating advanced PD. METHODS: Controlled clinical trials that compared STN-DBS to GPi-DBS for short-term treatment of PD in adults were researched up to November 2015. The primary outcomes were the Unified Parkinson’s Disease Rating Scale Section (UPDRS) III score and the levodopaequivalent dosage (LED) after DBS. The secondary outcomes were the UPDRS II score and the Beck Depression Inventory (BDI) score. RESULTS: Totally, 13 studies containing 1,148 PD patients were included in this meta-analysis to compare STN-DBS versus GPi-DBS. During the off-medication state, the pooled weighted mean difference (WMD) of UPDRS III and II scores were −2.18 (95% CI = −5.11 to 0.74) and −1.96 (95% CI = −3.84 to −0.08), respectively. During the on-medication state, the pooled WMD of UPDRS III and II scores were 0.15 (95% CI = −1.14 to 1.44) and 1.01 (95% CI = 0.12 to 1.89), respectively. After DBS, the pooled WMD of LED and BDI were −254.48 (95% CI = −341.66) and 2.29 (95% CI = 0.83 to 3.75), respectively. CONCLUSION: These results indicate that during the off-medication state, the STN-DBS might be superior to GPi-DBS in improving the motor function and activities of daily living for PD patients; but during the on-medication state, the opposite result is observed. Meanwhile, the STN-DBS is superior at reducing the LED, whereas the GPi-DBS shows a significantly greater reduction in BDI score after DBS. (PsycINFO Database Record (c) 2017 APA, all rights reserved)
Deep brain stimulator (DBS) implant surgery is considered a breakthrough in the treatment of Parkinson?s disease, especially in cases where motor symptoms cannot be controlled through conventional drug treatment. Its benefits have been studied extensively in the literature, particularly in relation to motor symptoms. However, the disease?s cognitive aspects havebeen studied to a lesser extent. Objective: This systematic review aims to assess the effects of DBS surgery on motor and cognitive symptoms in patients with Parkinson?s disease. Methods: The search strategy included MEDLINE, LILACs, SCIELO and the Cochrane Library. Randomized clinical trials with DBS surgical intervention and Parkinson?s disease were included. Of the 178 studies identified, 19 met the eligibility criteria. These studies were descriptively analyzed as regards to their results. Results: Control of motor symptoms, as assessed by the UPDRS Part III scale, was found in all of the studies, pointing to great interest in this outcome and demonstrating an advantage of DBS over conventional drug treatment. Regarding cognitive aspects, heterogeneity in the choice of subjects studied and the use of different assessment tools for each was evident, hampering comparisons and leading to inconclusive results. Conclusion: This review provides a broad overview of the effects of DBS on Parkinson?s disease symptoms. However, it is suggested that future studies be conducted to establish a gold-standard protocol for neuropsychological assessment, thereby enabling data comparison and more consistent conclusions.
OBJECTIVE Deep brain stimulation (DBS) is effective in the management of patients with advanced Parkinson's disease(PD). While both the globus pallidus pars interna (GPi) and the subthalamic nucleus (STN) are accepted targets,their relative efficacy in randomized controlled trials (RCTs) has not been established beyond 12 months. The objectiveof this study was to conduct a meta-analysis of RCTs to compare outcomes among adults with PD undergoing DBS ofGPi or STN at various time points, including 36 months of follow-up.METHODS The MEDLINE, Embase, CENTRAL, Web of Science, and CINAHL databases were searched. Registriesfor clinical trials, selected conference proceedings, and the table of contents for selected journals were also searched.Screens were conducted independently and in duplicate. Among the 623 studies initially identified (615 through databasesearch, 7 through manual review of bibliographies, and 1 through a repeat screen of literature prior to submission), 19underwent full-text review; 13 of these were included in the quantitative meta-analysis. Data were extracted independentlyand in duplicate. The Cochrane Collaboration tool was used to assess the risk of bias. The GRADE evidenceprofile tool was used to assess the quality of the evidence. Motor scores, medication dosage reduction, activities of dailyliving, depression, dyskinesias, and adverse events were compared. The influence of disease duration (a priori) and theproportion of male patients within a study (post hoc) were explored as potential subgroups.RESULTS Thirteen studies (6 original cohorts) were identified. No difference in motor scores or activities of daily livingwas identified at 36 months. Medications were significantly reduced with STN stimulation (5 studies, weighted mean difference[WMD] -365.46, 95% CI -599.48 to -131.44, p = 0.002). Beck Depression Inventory scores were significantlybetter with GPi stimulation (3 studies; WMD 2.53, 95% CI 0.99-4.06 p = 0.001). The motor benefits of GPi and STN DBSfor PD are similar.CONCLUSIONS The motor benefits achieved with GPi and STN DBS for PD are similar. DBS of STN allows for agreater reduction of medication, but not as significant an advantage as DBS of GPi with respect to mood. This differenceis sustained at 36 months. Further long-term studies are necessary.
Systematic Review Question»Systematic review of interventions