Broad Syntheses that include this review

loading
5 articles (5 References) loading Revert Studify

Systematic review

Unclassified

Journal The Cochrane database of systematic reviews
Year 2022
Loading references information
BACKGROUND: Acute respiratory infections (ARIs) are by far the most common reason for prescribing an antibiotic in primary care, even though the majority of ARIs are of viral or non-severe bacterial aetiology. It follows that in many cases antibiotic use will not be beneficial to a patient's recovery but may expose them to potential side effects. Furthermore, limiting unnecessary antibiotic use is a key factor in controlling antibiotic resistance. One strategy to reduce antibiotic use in primary care is point-of-care biomarkers. A point-of-care biomarker (test) of inflammation identifies part of the acute phase response to tissue injury regardless of the aetiology (infection, trauma, or inflammation) and may be used as a surrogate marker of infection, potentially assisting the physician in the clinical decision whether to use an antibiotic to treat ARIs. Biomarkers may guide antibiotic prescription by ruling out a serious bacterial infection and help identify patients in whom no benefit from antibiotic treatment can be anticipated. This is an update of a Cochrane Review first published in 2014. OBJECTIVES: To assess the benefits and harms of point-of-care biomarker tests of inflammation to guide antibiotic treatment in people presenting with symptoms of acute respiratory infections in primary care settings regardless of patient age. SEARCH METHODS: We searched CENTRAL (2022, Issue 6), MEDLINE (1946 to 14 June 2022), Embase (1974 to 14 June 2022), CINAHL (1981 to 14 June 2022), Web of Science (1955 to 14 June 2022), and LILACS (1982 to 14 June 2022). We also searched three trial registries (10 December 2021) for completed and ongoing trials. SELECTION CRITERIA: We included randomised controlled trials (RCTs) in primary care patients with ARIs that compared the use of point-of-care biomarkers with standard care. We included trials that randomised individual participants, as well as trials that randomised clusters of patients (cluster-RCTs). DATA COLLECTION AND ANALYSIS: Two review authors independently extracted data on the following primary outcomes: number of participants given an antibiotic prescription at index consultation and within 28 days follow-up; participant recovery within seven days follow-up; and total mortality within 28 days follow-up. We assessed risk of bias using the Cochrane risk of bias tool and the certainty of the evidence using GRADE. We used random-effects meta-analyses when feasible. We further analysed results with considerable heterogeneity in prespecified subgroups of individual and cluster-RCTs. MAIN RESULTS: We included seven new trials in this update, for a total of 13 included trials. Twelve trials (10,218 participants in total, 2335 of which were children) evaluated a C-reactive protein point-of-care test, and one trial (317 adult participants) evaluated a procalcitonin point-of-care test. The studies were conducted in Europe, Russia, and Asia. Overall, the included trials had a low or unclear risk of bias. However all studies were open-labelled, thereby introducing high risk of bias due to lack of blinding. The use of C-reactive protein point-of-care tests to guide antibiotic prescription likely reduces the number of participants given an antibiotic prescription, from 516 prescriptions of antibiotics per 1000 participants in the control group to 397 prescriptions of antibiotics per 1000 participants in the intervention group (risk ratio (RR) 0.77, 95% confidence interval (CI) 0.69 to 0.86; 12 trials, 10,218 participants; I² = 79%; moderate-certainty evidence).  Overall, use of C-reactive protein tests also reduce the number of participants given an antibiotic prescription within 28 days follow-up (664 prescriptions of antibiotics per 1000 participants in the control group versus 538 prescriptions of antibiotics per 1000 participants in the intervention group) (RR 0.81, 95% CI 0.76 to 0.86; 7 trials, 5091 participants; I² = 29; high-certainty evidence). The prescription of antibiotics as guided by C-reactive protein tests likely does not reduce the number of participants recovered, within seven or 28 days follow-up (567 participants recovered within seven days follow-up per 1000 participants in the control group versus 584 participants recovered within seven days follow-up per 1000 participants in the intervention group) (recovery within seven days follow-up: RR 1.03, 95% CI 0.96 to 1.12; I² = 0%; moderate-certainty evidence) (recovery within 28 days follow-up: RR 1.02, 95% CI 0.79 to 1.32; I² = 0%; moderate-certainty evidence). The use of C-reactive protein tests may not increase total mortality within 28 days follow-up, from 1 death per 1000 participants in the control group to 0 deaths per 1000 participants in the intervention group (RR 0.53, 95% CI 0.10 to 2.92; I² = 0%; low-certainty evidence). We are uncertain as to whether procalcitonin affects any of the primary or secondary outcomes because there were few participants, thereby limiting the certainty of evidence. We assessed the certainty of the evidence as moderate to high according to GRADE for the primary outcomes for C-reactive protein test, except for mortality, as there were very few deaths, thereby limiting the certainty of the evidence. AUTHORS' CONCLUSIONS: The use of C-reactive protein point-of-care tests as an adjunct to standard care likely reduces the number of participants given an antibiotic prescription in primary care patients who present with symptoms of acute respiratory infection. The use of C-reactive protein point-of-care tests likely does not affect recovery rates. It is unlikely that further research will substantially change our conclusion regarding the reduction in number of participants given an antibiotic prescription, although the size of the estimated effect may change.  The use of C-reactive protein point-of-care tests may not increase mortality within 28 days follow-up, but there were very few events. Studies that recorded deaths and hospital admissions were performed in children from low- and middle-income countries and older adults with comorbidities.  Future studies should focus on children, immunocompromised individuals, and people aged 80 years and above with comorbidities. More studies evaluating procalcitonin and potential new biomarkers as point-of-care tests used in primary care to guide antibiotic prescription are needed.  Furthermore, studies are needed to validate C-reactive protein decision algorithms, with a specific focus on potential age group differences.

Systematic review

Unclassified

BACKGROUND: Acute respiratory infections (ARIs) comprise of a large and heterogeneous group of infections including bacterial, viral, and other aetiologies. In recent years, procalcitonin (PCT), a blood marker for bacterial infections, has emerged as a promising tool to improve decisions about antibiotic therapy (PCT-guided antibiotic therapy). Several randomised controlled trials (RCTs) have demonstrated the feasibility of using procalcitonin for starting and stopping antibiotics in different patient populations with ARIs and different settings ranging from primary care settings to emergency departments, hospital wards, and intensive care units. However, the effect of using procalcitonin on clinical outcomes is unclear. This is an update of a Cochrane review and individual participant data meta-analysis first published in 2012 designed to look at the safety of PCT-guided antibiotic stewardship. OBJECTIVES: The aim of this systematic review based on individual participant data was to assess the safety and efficacy of using procalcitonin for starting or stopping antibiotics over a large range of patients with varying severity of ARIs and from different clinical settings. SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials (CENTRAL), which contains the Cochrane Acute Respiratory Infections Group's Specialised Register, MEDLINE, and Embase, in February 2017, to identify suitable trials. We also searched ClinicalTrials.gov to identify ongoing trials in April 2017. SELECTION CRITERIA: We included RCTs of adult participants with ARIs who received an antibiotic treatment either based on a procalcitonin algorithm (PCT-guided antibiotic stewardship algorithm) or usual care. We excluded trials if they focused exclusively on children or used procalcitonin for a purpose other than to guide initiation and duration of antibiotic treatment. DATA COLLECTION AND ANALYSIS: Two teams of review authors independently evaluated the methodology and extracted data from primary studies. The primary endpoints were all-cause mortality and treatment failure at 30 days, for which definitions were harmonised among trials. Secondary endpoints were antibiotic use, antibiotic-related side effects, and length of hospital stay. We calculated odds ratios (ORs) and 95% confidence intervals (CIs) using multivariable hierarchical logistic regression adjusted for age, gender, and clinical diagnosis using a fixed-effect model. The different trials were added as random-effects into the model. We conducted sensitivity analyses stratified by clinical setting and type of ARI. We also performed an aggregate data meta-analysis. MAIN RESULTS: From 32 eligible RCTs including 18 new trials for this 2017 update, we obtained individual participant data from 26 trials including 6708 participants, which we included in the main individual participant data meta-analysis. We did not obtain individual participant data for four trials, and two trials did not include people with confirmed ARIs. According to GRADE, the quality of the evidence was high for the outcomes mortality and antibiotic exposure, and quality was moderate for the outcomes treatment failure and antibiotic-related side effects.Primary endpoints: there were 286 deaths in 3336 procalcitonin-guided participants (8.6%) compared to 336 in 3372 controls (10.0%), resulting in a significantly lower mortality associated with procalcitonin-guided therapy (adjusted OR 0.83, 95% CI 0.70 to 0.99, P = 0.037). We could not estimate mortality in primary care trials because only one death was reported in a control group participant. Treatment failure was not significantly lower in procalcitonin-guided participants (23.0% versus 24.9% in the control group, adjusted OR 0.90, 95% CI 0.80 to 1.01, P = 0.068). Results were similar among subgroups by clinical setting and type of respiratory infection, with no evidence for effect modification (P for interaction > 0.05). Secondary endpoints: procalcitonin guidance was associated with a 2.4-day reduction in antibiotic exposure (5.7 versus 8.1 days, 95% CI -2.71 to -2.15, P < 0.001) and lower risk of antibiotic-related side effects (16.3% versus 22.1%, adjusted OR 0.68, 95% CI 0.57 to 0.82, P < 0.001). Length of hospital stay and intensive care unit stay were similar in both groups. A sensitivity aggregate-data analysis based on all 32 eligible trials showed similar results. AUTHORS' CONCLUSIONS: This updated meta-analysis of individual participant data from 12 countries shows that the use of procalcitonin to guide initiation and duration of antibiotic treatment results in lower risks of mortality, lower antibiotic consumption, and lower risk for antibiotic-related side effects. Results were similar for different clinical settings and types of ARIs, thus supporting the use of procalcitonin in the context of antibiotic stewardship in people with ARIs. Future high-quality research is needed to confirm the results in immunosuppressed patients and patients with non-respiratory infections.

Systematic review

Unclassified

Journal Cochrane Database of Systematic Reviews
Year 2014
Loading references information
BACKGROUND: Pediatric acute respiratory infections (ARIs) represent a significant burden on pediatric Emergency Departments (EDs) and families. Most of these illnesses are due to viruses. However, investigations (radiography, blood, and urine testing) to rule out bacterial infections and antibiotics are often ordered because of diagnostic uncertainties. This results in prolonged ED visits and unnecessary antibiotic use. The risk of concurrent bacterial infection has been reported to be negligible in children over three months of age with a confirmed viral infection. Rapid viral testing in the ED may alleviate the need for precautionary testing and antibiotic use. OBJECTIVES: To determine if the use of a rapid viral detection test for children with an acute respiratory infection (ARI) in Emergency Departments (EDs) changes patient management and resource use in the ED, compared to not using a rapid viral detection test. We hypothesized that rapid viral testing reduces antibiotic use in the ED as well as reduces the rate of ancillary testing and length of ED visits. SEARCH METHODS: We searched CENTRAL (2014, Issue 6), MEDLINE (1950 to July week 1, 2014), MEDLINE In-Process & Other Non-Indexed Citations (15 July 2014), EMBASE.com (1988 to July 2014), HealthStar (1966 to 2009), BIOSIS Previews (1969 to July 2014), CAB Abstracts (1973 to July 2014), CBCA Reference (1970 to 2007) and ProQuest Dissertations and Theses (1861 to 2009). SELECTION CRITERIA: Randomized controlled trials (RCTs) of rapid viral testing for children with ARIs in the ED. DATA COLLECTION AND ANALYSIS: Two review authors used the inclusion criteria to select trials, evaluate their quality, and extract data. We obtained missing data from trial authors. We expressed differences in rate of investigations and antibiotic use as risk ratios (RRs), and expressed difference in ED length of visits as mean differences (MDs), with 95% confidence intervals (CIs). MAIN RESULTS: No new trials were identified in this 2014 update. We included four trials (three RCTs and one quazi-RCT), with 759 children in the rapid viral testing group and 829 in the control group. Three out of the four studies were comparable in terms of young age of participants, with one study increasing the age of inclusion up to five years of age. All studies included either fever or respiratory symptoms as inclusion criteria (two required both, one required fever or respiratory symptoms, and one required only fever). All studies were comparable in terms of exclusion criteria, intervention, and outcome data. In terms of risk of bias, one study failed to utilize a random sequence generator, one study did not comment on completeness of outcome data, and only one of four studies included allocation concealment as part of the study design. None of the studies definitively blinded participants. Rapid viral testing resulted in a trend toward decreased antibiotic use in the ED, but this was not statistically significant. We found lower rates of chest radiography (RR 0.77, 95% CI 0.65 to 0.91) in the rapid viral testing group, but no effect on length of ED visits, or blood or urine testing in the ED. No study made mention of any adverse effects related to viral testing. AUTHORS' CONCLUSIONS: There is insufficient evidence to support routine rapid viral testing to reduce antibiotic use in pediatric EDs. Rapid viral testing may or may not reduce rates of antibiotic use, and other investigations (urine and blood testing); these studies do not provide enough power to resolve this question. However, rapid viral testing does reduce the rate of chest X-rays in the ED. An adequately powered trial with antibiotic use as an outcome is needed.

Systematic review

Unclassified

Authors Huang Y , Chen R , Wu T , Wei X , Guo A
Journal The British journal of general practice : the journal of the Royal College of General Practitioners
Year 2013
Loading references information
BACKGROUND: Most patients with respiratory tract infections (RTIs) are prescribed antibiotics in general practice. However, there is little evidence that antibiotics bring any value to the treatment of most RTIs. Point-of-care C-reactive protein testing may reduce antibiotic prescribing. AIM: To systematically review studies that have examined the association between point-of-care (POC) C-reactive protein testing and antibiotic prescribing for RTIs in general practice. DESIGN AND SETTING: Systematic review and meta-analysis of randomised controlled trials and observational studies. METHOD: MEDLINE(®) and Embase were systematically searched to identify relevant publications. All studies that examined the association between POC C-reactive protein testing and antibiotic prescribing for patients with RTIs were included. Two authors independently screened the search results and extracted data from eligible studies. Dichotomous measures of outcomes were combined using risk ratios (RRs) with 95% confidence intervals (CIs) either by fixed or random-effect models. RESULTS: Thirteen studies containing 10 005 patients met the inclusion criteria. POC C-reactive protein testing was associated with a significant reduction in antibiotic prescribing at the index consultation (RR 0.75, 95% CI = 0.67 to 0.83), but was not associated with antibiotic prescribing at any time during the 28-day follow-up period (RR 0.85, 95% CI = 0.70 to 1.01) or with patient satisfaction (RR 1.07, 95% CI = 0.98 to 1.17). CONCLUSION: POC C-reactive protein testing significantly reduced antibiotic prescribing at the index consultation for patients with RTIs. Further studies are needed to analyse the confounders that lead to the heterogeneity.

Systematic review

Unclassified

Journal Archives of internal medicine
Year 2011
Previous randomized controlled trials suggest that using clinical algorithms based on procalcitonin levels, a marker of bacterial infections, results in reduced antibiotic use without a deleterious effect on clinical outcomes. However, algorithms differed among trials and were embedded primarily within the European health care setting. Herein, we summarize the design, efficacy, and safety of previous randomized controlled trials and propose adapted algorithms for US settings. We performed a systematic search and included all 14 randomized controlled trials (N = 4467 patients) that investigated procalcitonin algorithms for antibiotic treatment decisions in adult patients with respiratory tract infections and sepsis from primary care, emergency department (ED), and intensive care unit settings. We found no significant difference in mortality between procalcitonin-treated and control patients overall (odds ratio, 0.91; 95% confidence interval, 0.73-1.14) or in primary care (0.13; 0-6.64), ED (0.95; 0.67-1.36), and intensive care unit (0.89; 0.66-1.20) settings individually. A consistent reduction was observed in antibiotic prescription and/or duration of therapy, mainly owing to lower prescribing rates in low-acuity primary care and ED patients, and shorter duration of therapy in moderate- and high-acuity ED and intensive care unit patients. Measurement of procalcitonin levels for antibiotic decisions in patients with respiratory tract infections and sepsis appears to reduce antibiotic exposure without worsening the mortality rate. We propose specific procalcitonin algorithms for low-, moderate-, and high-acuity patients as a basis for future trials aiming at reducing antibiotic overconsumption.