Systematic reviews related to this topic

loading
4 References (4 articles) loading Revert Studify

Systematic review

Unclassified

Journal Cochrane Database of Systematic Reviews
Year 2018
BACKGROUND: The optimal treatment of superficial thrombophlebitis (ST) of the legs remains poorly defined. While improving or relieving the local painful symptoms, treatment should aim at preventing venous thromboembolism (VTE), which might complicate the natural history of ST. This is the third update of a review first published in 2007. OBJECTIVES: To assess the efficacy and safety of topical, medical, and surgical treatments for ST of the leg in improving local symptoms and decreasing thromboembolic complications. SEARCH METHODS: For this update, the Cochrane Vascular Information Specialist searched the Cochrane Vascular Specialised Register (March 2017), CENTRAL (2017, Issue 2), and trials registries (March 2017). We handsearched the reference lists of relevant papers and conference proceedings. SELECTION CRITERIA: Randomised controlled trials (RCTs) evaluating topical, medical, and surgical treatments for ST of the legs that included people with a clinical diagnosis of ST of the legs or objective diagnosis of a thrombus in a superficial vein. DATA COLLECTION AND ANALYSIS: Two authors assessed the trials for inclusion in the review, extracted the data, and assessed the quality of the studies. Data were independently extracted from the included studies and any disagreements resolved by consensus. We assessed the quality of the evidence using the GRADE approach. MAIN RESULTS: We identified three additional trials (613 participants), therefore this update considered 33 studies involving 7296 people with ST of the legs. Treatment included fondaparinux; rivaroxaban; low molecular weight heparin (LMWH); unfractionated heparin (UFH); non-steroidal anti-inflammatory drugs (NSAIDs); compression stockings; and topical, intramuscular, or intravenous treatment to surgical interventions such as thrombectomy or ligation. Only a minority of trials compared treatment with placebo rather than an alternative treatment and many studies were small and of poor quality. Pooling of the data was possible for few outcomes, and none were part of a placebo-controlled trial. In one large, placebo-controlled RCT of 3002 participants, subcutaneous fondaparinux was associated with a significant reduction in symptomatic VTE (risk ratio (RR) 0.15, 95% confidence interval (CI) 0.04 to 0.50; moderate-quality evidence), ST extension (RR 0.08, 95% CI 0.03 to 0.22; moderate-quality evidence), and ST recurrence (RR 0.21, 95% CI 0.08 to 0.54; moderate-quality evidence) relative to placebo. Major bleeding was infrequent in both groups with very wide CIs around risk estimate (RR 0.99, 95% CI 0.06 to 15.86; moderate-quality evidence). In one RCT on 472 high-risk participants with ST, fondaparinux was associated with a non-significant reduction of symptomatic VTE compared to rivaroxaban 10 mg (RR 0.33, 95% CI 0.03 to 3.18; low-quality evidence). There were no major bleeding events in either group (low-quality evidence). In another placebo-controlled trial, both prophylactic and therapeutic doses of LMWH (prophylactic: RR 0.44, 95% CI 0.26 to 0.74; therapeutic: RR 0.46, 95% CI 0.27 to 0.77) and NSAIDs (RR 0.46, 95% CI 0.27 to 0.78) reduced the extension (low-quality evidence) and recurrence of ST (low-quality evidence) in comparison to placebo, with no significant effects on symptomatic VTE (low-quality evidence) or major bleeding (low-quality evidence). Overall, topical treatments improved local symptoms compared with placebo, but no data were provided on the effects on VTE and ST extension. Surgical treatment combined with elastic stockings was associated with a lower VTE rate and ST progression compared with elastic stockings alone. However, the majority of studies that compared different oral treatments, topical treatments, or surgery did not report VTE, ST progression, adverse events, or treatment adverse effects. AUTHORS' CONCLUSIONS: Prophylactic dose fondaparinux given for 45 days appears to be a valid therapeutic option for ST of the legs for most people. The evidence on topical treatment or surgery is too limited and does not inform clinical practice about the effects of these treatments in terms of VTE. Further research is needed to assess the role of rivaroxaban and other direct oral factor-X or thrombin inhibitors, LMWH, and NSAIDs; the optimal doses and duration of treatment in people at various risk of recurrence; and whether a combination therapy may be more effective than single treatment. Adequately designed and conducted studies are required to clarify the role of topical and surgical treatments.

Systematic review

Unclassified

Authors Dong K , Song Y , Li X , Ding J , Gao Z , Lu D , Zhu Y
Journal Cochrane Database of Systematic Reviews
Year 2016
Loading references information
Background: Venous thromboembolism (VTE) is a common condition with potentially serious and life-threatening consequences. The standard method of thromboprophylaxis uses an anticoagulant such as low molecular weight heparin (LMWH) or warfarin. In recent years, another type of anticoagulant, pentasaccharide, an indirect factor Xa inhibitor, has shown good anticoagulative effect in clinical trials. Three types of pentasaccharides are available: short-acting fondaparinux, long-acting idraparinux and idrabiotaparinux. Pentasaccharides cause little heparin-induced thrombocytopenia and are better tolerated than unfractionated heparin, LMWH and warfarin. However, no consensus has been reached on whether pentasaccharides are superior or inferior to other anticoagulative methods. Objectives: To assess effects of pentasaccharides versus other methods of thromboembolic prevention (thromboprophylaxis) in people who require anticoagulant treatment to prevent venous thromboembolism. Search methods: The Cochrane Vascular Information Specialist (CIS) searched the Specialised Register (last searched March 2016) and the Cochrane Central Register of Controlled Trials (CENTRAL; 2016, Issue 2). The CIS searched trial databases for details of ongoing and unpublished studies. Review authors searched LILACS (Latin American and Caribbean Health Sciences) and the reference lists of relevant studies and reviews identified by electronic searches. Selection criteria: We included randomised controlled trials on any type of pentasaccharide versus other anticoagulation methods (pharmaceutical or mechanical) for VTE prevention. Data collection and analysis: Two review authors independently selected trials, assessed methodological quality and extracted data in predesigned tables. Main results: We included in this review 25 studies with a total of 21,004 participants. All investigated fondaparinux for VTE prevention; none investigated idraparinux or idrabiotaparinux. Studies included participants undergoing abdominal surgery, thoracic surgery, bariatric surgery or coronary bypass surgery; acutely ill hospitalised medical patients; people requiring rigid or semirigid immobilisation; and those with superficial venous thrombosis. Most studies focused on orthopaedic patients. We lowered the quality of the evidence because of heterogeneity between studies and a small number of events causing imprecision. When comparing fondaparinux with placebo, we found less total VTE (risk ratio (RR) 0.24, 95% confidence interval (CI) 0.15 to 0.38; 5717 participants; 8 studies; I2 = 64%; P < 0.00001), less symptomatic VTE (RR 0.15, 95% CI 0.06 to 0.36; 6503 participants; 8 studies; I2 = 0%; P < 0.0001), less total DVT (RR 0.25, 95% CI 0.15 to 0.40; 5715 participants; 8 studies; I2 = 67%; P < 0.00001), less proximal DVT (RR 0.12, 95% CI 0.04 to 0.39; 2746 participants; 7 studies; I2 = 64%; P = 0.0004) and less total pulmonary embolism (PE) (RR 0.16, 95% CI 0.04 to 0.62; 6412 participants; 8 studies; I2 = 0%; P = 0.008) in the fondaparinux group. The quality of the evidence was moderate for total VTE, total DVT and proximal DVT, and high for symptomatic VTE and total PE. When fondaparinux was compared with LMWH, analyses indicated that fondaparinux reduced total VTE and DVT (RR 0.55, 95% CI 0.42 to 0.73; 9339 participants; 11 studies; I2 = 64%; P < 0.0001; and RR 0.54, 95% CI 0.40 to 0.71; 9356 participants; 10 studies; I2 = 67%; P < 0.0001, respectively), and showed a trend toward reduced proximal DVT (RR 0.58, 95% CI 0.33 to 1.02; 8361 participants; 9 studies; I2 = 53%; P = 0.06). Symptomatic VTE (RR 1.03, 95% CI 0.65 to 1.63; 12240 participants; 9 studies; I2 = 35%; P = 0.90) and total PE (RR 1.24, 95% CI 0.65 to 2.34; 12350 participants; 10 studies; I2 = 0%; P = 0.51) indicated no difference between fondaparinux and LMWH. The quality of the evidence was moderate for total VTE, symptomatic VTE, total DVT and total PE, and low for proximal DVT. We showed that fondaparinux increased major bleeding compared with both placebo and LWMH (RR 2.56, 95% CI 1.48 to 4.44; 6659 participants; 8 studies; I2 = 0%; P = 0.0008; moderate-quality evidence; and RR 1.38, 95% CI 1.09 to 1.75; 12,501 participants; 11 studies; I2 = 24%; P = 0.008; high-quality evidence, respectively). All-cause mortality was not different between fondaparinux and placebo or LMWH (RR 0.76, 95% CI 0.48 to 1.22; 6674 participants; 8 studies; I2 = 14%; P = 0.26; moderate-quality evidence; and RR 0.88, 95% CI 0.63 to 1.22; 12,400 participants; 11 studies; I2 = 0%; P = 0.44; moderate-quality evidence, respectively). One study compared fondaparinux with variable and fixed (1 mg per day) doses of warfarin after elective hip or knee replacement surgery and showed no difference in primary and secondary outcomes between fondaparinux and both variable and fixed doses of warfarin. The quality of the evidence was very low. One small study compared fondaparinux with edoxaban in patients with severe renal impairment undergoing lower-limb orthopaedic surgery and reported no thromboembolic events, major bleeding events or deaths in either group. The quality of the evidence was very low. One small study compared fondaparinux with mechanical thromboprophylaxis. Results showed no difference in total VTE and total DVT between fondaparinux and mechanical thromboprophylaxis. This study reported no cases pertaining to the other outcomes of this review. The quality of the evidence was low. There were insufficient studies to permit meaningful conclusions for subgroups of clinical conditions other than orthopaedic surgery. Authors' conclusions: Moderate to high quality evidence shows that fondaparinux is effective for short-term prevention of VTE when compared with placebo. It can reduce total VTE, DVT, total PE and symptomatic VTE, and does not demonstrate a reduction in deaths compared with placebo. Low to moderate quality evidence shows that fondaparinux is more effective for short-term VTE prevention when compared with LMWH. It can reduce total VTE and total DVT and does not demonstrate a reduction in deaths when compared with LMWH. However, at the same time, moderate to high quality evidence shows that fondaparinux increases major bleeding when compared with placebo and LMWH. Therefore, when fondaparinux is chosen for the prevention of VTE, attention should be paid to the person's bleeding and thrombosis risks. Most data were derived from patients undergoing orthopaedic surgery. Therefore, the conclusion predominantly pertains to these patients. Data on fondaparinux for other clinical conditions are sparse.

Systematic review

Unclassified

Journal Cochrane Database of Systematic Reviews
Year 2015
Loading references information
Background: Although superficial thrombophlebitis of the upper extremity represents a frequent complication of intravenous catheters inserted into the peripheral veins of the forearm or hand, no consensus exists on the optimal management of this condition in clinical practice. Objectives: To summarise the evidence from randomised clinical trials (RCTs) concerning the efficacy and safety of (topical, oral or parenteral) medical therapy of superficial thrombophlebitis of the upper extremity. Search methods: The Cochrane Vascular Group Trials Search Co-ordinator searched the Specialised Register (last searched April 2015) and the Cochrane Register of Studies (2015, Issue 3). Clinical trials registries were searched up to April 2015. Selection criteria: RCTs comparing any (topical, oral or parenteral) medical treatment to no intervention or placebo, or comparing two different medical interventions (e.g. a different variant scheme or regimen of the same intervention or a different pharmacological type of treatment). Data collection and analysis: We extracted data on methodological quality, patient characteristics, interventions and outcomes, including improvement of signs and symptoms as the primary effectiveness outcome, and number of participants experiencing side effects of the study treatments as the primary safety outcome. Main results: We identified 13 studies (917 participants). The evaluated treatment modalities consisted of a topical treatment (11 studies), an oral treatment (2 studies) and a parenteral treatment (2 studies). Seven studies used a placebo or no intervention control group, whereas all others also or solely compared active treatment groups. No study evaluated the effects of ice or the application of cold or hot bandages. Overall, the risk of bias in individual trials was moderate to high, although poor reporting hampered a full appreciation of the risk in most studies. The overall quality of the evidence for each of the outcomes varied from low to moderate mainly due to risk of bias and imprecision, with only single trials contributing to most comparisons. Data on primary outcomes improvement of signs and symptoms and side effects attributed to the study treatment could not be statistically pooled because of the between-study differences in comparisons, outcomes and type of instruments to measure outcomes. An array of topical treatments, such as heparinoid or diclofenac gels, improved pain compared to placebo or no intervention. Compared to placebo, oral non-steroidal anti-inflammatory drugs reduced signs and symptoms intensity. Safety issues were reported sparsely and were not available for some interventions, such as notoginseny creams, parenteral low-molecular-weight heparin or defibrotide. Although several trials reported on adverse events with topical heparinoid creams, Essaven gel or phlebolan versus control, the trials were underpowered to adequately measure any differences between treatment modalities. Where reported, adverse events with topical treatments consisted mainly of local allergic reactions. Only one study of 15 participants assessed thrombus extension and symptomatic venous thromboembolism with either oral non-steroidal anti-inflammatory drugs or low-molecular-weight heparin, and it reported no cases of either. No study reported on the development of suppurative phlebitis, catheter-related bloodstream infections or quality of life. Authors' conclusions: The evidence about the treatment of acute infusion superficial thrombophlebitis is limited and of low quality. Data appear too preliminary to assess the effectiveness and safety of topical treatments, systemic anticoagulation or oral non-steroidal anti-inflammatory drugs.

Systematic review

Unclassified

Journal Haematologica
Year 2005
BACKGROUND AND OBJECTIVES: The aim of this systematic review was to summarize the evidence from randomized controlled trials (RCT) concerning the efficacy and safety of medical or surgical treatments of superficial vein thrombosis (SVT) for the prevention of deep venous thrombosis (DVT) and pulmonary embolism (PE). DESIGN AND METHODS: A systematic search was performed in MEDLINE, EMBASE and the Cochrane (CENTRAL) database to identify all randomized trials that evaluated the effect of surgical or medical treatment in the prevention of venous thromboembolism (VTE) in patients with SVT of the legs. RESULTS: Five studies were included. Pooling of the data was not possible due to the heterogeneity among the studies. Moreover, three studies had major methodological drawbacks limiting the clinical applicability of the results. One of the remaining (pilot) studies showed a non-significant trend in favor of high- compared to low-dose unfractionated heparin for the prevention of VTE. The last remaining study showed a non-significant trend in favor of short-term treatment with low-molecular-weight heparin (LMWH) or a non-steroidal anti-inflammatory drug (NSAID) as compared to placebo shortly after treatment with respect to VTE, but the apparent benefit disappeared after three months of follow-up. Active treatment of SVT reduced the incidences of SVT extension or recurrence. INTERPRETATION AND CONCLUSIONS: Treatment with a therapeutic or prophylactic dose of LMWH or a NSAID reduces the incidence of SVT extension or recurrence, but not VTE. More RCT are needed before any evidence-based recommendations on the treatment of SVT for the prevention of VTE can be given. With the present lack of solid evidence we would suggest treating patients with at least intermediate doses of LMWH.