INTRODUCTION: Regenerative therapies in Parkinson's disease aim to slow neurodegeneration and re-establish damaged neuronal circuitry. Neurotrophins are potent endogenous regulators of neuronal survival, development and regeneration. They represent an attractive regenerative treatment option in Parkinson's disease. Porcine choroid plexus produces a number of neurotrophins, and can be safely delivered to the striatum in an encapsulated formulation (termed NTCELL®) to protect them from immune attack. NTCELL® has shown regenerative potential in animal models of stroke, Huntington's disease and Parkinson's disease. Following promising results from an initial open label safety study of intra-striatal delivery of NTCELL® in human subjects, we sought to specifically investigate the safety and efficacy of NTCELL® for the treatment of Parkinson's disease.
METHODS: 18 patients aged 56-65 years with idiopathic Parkinson's disease of at least 5 years duration were randomised to receive either sham surgery (general anaesthesia and partial thickness burr holes) or intra-striatal delivery of NTCELL® (the 3 groups in the treatment arm receiving incremental NTCELL® doses).
RESULTS: At 26 weeks, we found no significant difference in total UPDRS scores ('on' and 'off'), UPDRS motor scores ('on' and 'off'), PDQ-39, UDysRS, timed walk or modified Hoehn and Yahr stage between patients implanted with NTCELL® and patients undergoing sham procedure. There were no serious adverse events or xenogeneic viral transmission during the study.
CONCLUSION: The study did not meet its primary efficacy end-point of a change in UPDRS at 26 weeks post-intervention compared with baseline. Stereotactic NTCELL® implantation was safe and well tolerated.
OBJECTIVE: A 12-month double-blind sham-surgery-controlled trial assessing adeno-associated virus type 2 (AAV2)-neurturin injected into the putamen bilaterally failed to meet its primary endpoint, but showed positive results for the primary endpoint in the subgroup of subjects followed for 18 months and for several secondary endpoints. Analysis of postmortem tissue suggested impaired axonal transport of neurturin from putamen to substantia nigra. In the present study, we tested the safety and efficacy of AAV2-neurturin delivered to putamen and substantia nigra.
METHODS: We performed a 15- to 24-month, multicenter, double-blind trial in patients with advanced Parkinson disease (PD) who were randomly assigned to receive bilateral AAV2-neurturin injected bilaterally into the substantia nigra (2.0 × 10(11) vector genomes) and putamen (1.0 × 10(12) vector genomes) or sham surgery. The primary endpoint was change from baseline to final visit performed at the time the last enrolled subject completed the 15-month evaluation in the motor subscore of the Unified Parkinson's Disease Rating Scale in the practically defined off state.
RESULTS: Fifty-one patients were enrolled in the trial. There was no significant difference between groups in the primary endpoint (change from baseline: AAV2-neurturin, -7.0 ± 9.92; sham, -5.2 ± 10.01; p = 0.515) or in most secondary endpoints. Two subjects had cerebral hemorrhages with transient symptoms. No clinically meaningful adverse events were attributed to AAV2-neurturin.
INTERPRETATION: AAV2-neurturin delivery to the putamen and substantia nigra bilaterally in PD was not superior to sham surgery. The procedure was well tolerated, and there were no clinically significant adverse events related to AAV2-neurturin.
BACKGROUND: Human retinal pigment epithelial (RPE) cells produce levodopa and their transplantation into the striatum might improve continuity of administration compared with that achieved with oral levodopa. We aimed to assess the safety, tolerability, and efficacy of transplantation of microcarrier-bound human RPE cells versus a sham surgery control in patients with advanced Parkinson's disease.
METHODS: In this randomised, double-blind study eligible patients were aged 36-70 years, had been symptomatic for at least 5 years, were in Hoehn and Yahr stage 3-4 and had unified Parkinson's disease rating scale (UPDRS) motor scores of 38-70 when off medication (off state), and had symptoms that responded to oral levodopa but were insufficiently controlled by optimised pharmacotherapy. Randomisation was done in a 1:1 ratio. Only the neurosurgical team was aware of treatment assignments. During stereotactic transplantation around 325,000 cells per side were injected into the postcommissural putamen; sham surgery patients received partial burr holes. The primary efficacy endpoint was change in UPDRS off-state motor score at 12 months. This study is registered with ClinicalTrials.gov, number NCT00206687.
FINDINGS: Of 71 enrolled patients, 35 underwent cell transplantation and 36 sham surgery. Change in mean motor scores did not differ significantly between groups (-10.5 [SD 10.26] for transplantation vs -10.1 [SD 12.26] for sham surgery, p=0.9). The overall rate of adverse events was similar in the two study groups, although the number attributable to surgery or RPE cells (mostly neurological or psychiatric) was higher in transplant recipients. Two and seven patients died in the sham surgery and transplantation group, respectively; one death in the latter group was possibly related to surgery or RPE cells.
INTERPRETATION: Transplantation of human RPE cells provided no antiparkinsonian benefits compared with sham surgery.
FUNDING: Bayer HealthCare AG.
BACKGROUND: Gene transfer of glutamic acid decarboxylase (GAD) and other methods that modulate production of GABA in the subthalamic nucleus improve basal ganglia function in parkinsonism in animal models. We aimed to assess the effect of bilateral delivery of AAV2-GAD in the subthalamic nucleus compared with sham surgery in patients with advanced Parkinson's disease.
METHODS: Patients aged 30-75 years who had progressive levodopa-responsive Parkinson's disease and an overnight off-medication unified Parkinson's disease rating scale (UPDRS) motor score of 25 or more were enrolled into this double-blind, phase 2, randomised controlled trial, which took place at seven centres in the USA between Nov 17, 2008, and May 11, 2010. Infusion failure or catheter tip location beyond a predefined target zone led to exclusion of patients before unmasking for the efficacy analysis. The primary outcome measure was the 6-month change from baseline in double-blind assessment of off-medication UPDRS motor scores. This trial is registered with ClinicalTrials.gov, NCT00643890.
FINDINGS: Of 66 patients assessed for eligibility, 23 were randomly assigned to sham surgery and 22 to AAV2-GAD infusions; of those, 21 and 16, respectively, were analysed. At the 6-month endpoint, UPDRS score for the AAV2-GAD group decreased by 8·1 points (SD 1·7, 23·1%; p<0·0001) and by 4·7 points in the sham group (1·5, 12·7%; p=0·003). The AAV2-GAD group showed a significantly greater improvement from baseline in UPDRS scores compared with the sham group over the 6-month course of the study (RMANOVA, p=0·04). One serious adverse event occurred within 6 months of surgery; this case of bowel obstruction occurred in the AAV2-GAD group, was not attributed to treatment or the surgical procedure, and fully resolved. Other adverse events were mild or moderate, likely related to surgery and resolved; the most common were headache (seven patients in the AAV2-GAD group vs two in the sham group) and nausea (six vs two).
INTERPRETATION: The efficacy and safety of bilateral infusion of AAV2-GAD in the subthalamic nucleus supports its further development for Parkinson's disease and shows the promise for gene therapy for neurological disorders.
FUNDING: Neurologix.
Thirty-four patients with advanced Parkinson's disease participated in a prospective 24-month double-blind, placebo-controlled trial of fetal nigral transplantation. Patients were randomized to receive bilateral transplantation with one or four donors per side or a placebo procedure. The primary end point was change between baseline and final visits in motor component of the Unified Parkinson's Disease Rating Scale in the practically defined off state. There was no significant overall treatment effect (p = 0.244). Patients in the placebo and one-donor groups deteriorated by 9.4 +/- 4.25 and 3.5 +/- 4.23 points, respectively, whereas those in the four-donor group improved by 0.72 +/- 4.05 points. Pairwise comparisons were not significant, although the four-donor versus placebo groups yielded a p value of 0.096. Stratification based on disease severity showed a treatment effect in milder patients (p = 0.006). Striatal fluorodopa uptake was significantly increased after transplantation in both groups and robust survival of dopamine neurons was observed at postmortem examination. Fifty-six percent of transplanted patients developed dyskinesia that persisted after overnight withdrawal of dopaminergic medication ("off"-medication dyskinesia). Fetal nigral transplantation currently cannot be recommended as a therapy for PD based on these results.
BACKGROUND: Transplantation of human embryonic dopamine neurons into the brains of patients with Parkinson's disease has proved beneficial in open clinical trials. However, whether this intervention would be more effective than sham surgery in a controlled trial is not known.
METHODS: We randomly assigned 40 patients who were 34 to 75 years of age and had severe Parkinson's disease (mean duration, 14 years) to receive a transplant of nerve cells or sham surgery; all were to be followed in a double-blind manner for one year. In the transplant recipients, cultured mesencephalic tissue from four embryos was implanted into the putamen bilaterally. In the patients who received sham surgery, holes were drilled in the skull but the dura was not penetrated. The primary outcome was a subjective global rating of the change in the severity of disease, scored on a scale of -3.0 to 3.0 at one year, with negative scores indicating a worsening of symptoms and positive scores an improvement.
RESULTS: The mean (+/-SD) scores on the global rating scale for improvement or deterioration at one year were 0.0+/-2.1 in the transplantation group and -0.4+/-1.7 in the sham-surgery group. Among younger patients (60 years old or younger), standardized tests of Parkinson's disease revealed significant improvement in the transplantation group as compared with the sham-surgery group when patients were tested in the morning before receiving medication (P=0.01 for scores on the Unified Parkinson's Disease Rating Scale; P=0.006 for the Schwab and England score). There was no significant improvement in older patients in the transplantation group. Fiber outgrowth from the transplanted neurons was detected in 17 of the 20 patients in the transplantation group, as indicated by an increase in 18F-fluorodopa uptake on positron-emission tomography or postmortem examination. After improvement in the first year, dystonia and dyskinesias recurred in 15 percent of the patients who received transplants, even after reduction or discontinuation of the dose of levodopa.
CONCLUSIONS: Human embryonic dopamine-neuron transplants survive in patients with severe Parkinson's disease and result in some clinical benefit in younger but not in older patients.
Regenerative therapies in Parkinson's disease aim to slow neurodegeneration and re-establish damaged neuronal circuitry. Neurotrophins are potent endogenous regulators of neuronal survival, development and regeneration. They represent an attractive regenerative treatment option in Parkinson's disease. Porcine choroid plexus produces a number of neurotrophins, and can be safely delivered to the striatum in an encapsulated formulation (termed NTCELL®) to protect them from immune attack. NTCELL® has shown regenerative potential in animal models of stroke, Huntington's disease and Parkinson's disease. Following promising results from an initial open label safety study of intra-striatal delivery of NTCELL® in human subjects, we sought to specifically investigate the safety and efficacy of NTCELL® for the treatment of Parkinson's disease.
METHODS:
18 patients aged 56-65 years with idiopathic Parkinson's disease of at least 5 years duration were randomised to receive either sham surgery (general anaesthesia and partial thickness burr holes) or intra-striatal delivery of NTCELL® (the 3 groups in the treatment arm receiving incremental NTCELL® doses).
RESULTS:
At 26 weeks, we found no significant difference in total UPDRS scores ('on' and 'off'), UPDRS motor scores ('on' and 'off'), PDQ-39, UDysRS, timed walk or modified Hoehn and Yahr stage between patients implanted with NTCELL® and patients undergoing sham procedure. There were no serious adverse events or xenogeneic viral transmission during the study.
CONCLUSION:
The study did not meet its primary efficacy end-point of a change in UPDRS at 26 weeks post-intervention compared with baseline. Stereotactic NTCELL® implantation was safe and well tolerated.