We have begun development of an interactive, multi-player serious game for the purpose of training cardiac surgeons, fellows, and residents the series of steps comprising the Off-Pump Coronary Artery Bypass grafting (OPCAB) surgical procedure. It is hypothesized that by learning the OPCAB procedure in a "first-person-shooter gaming environment", trainees will have a much better understanding of the procedure than by traditional learning modalities. The serious game will allow for simulation parameters related to levels of fidelity to be easily adjusted so that the effect of fidelity on knowledge transfer can be examined.
Immersive online medical environments, with dynamic virtual patients, have been shown to be effective for scenario-based learning (1). However, ease of use and ease of access have been barriers to their use. We used feedback from prior evaluation of these projects to design and develop CliniSpace. To improve usability, we retained the richness of prior virtual environments but modified the user interface. To improve access, we used a Software-as-a-Service (SaaS) approach to present a richly immersive 3D environment within a web browser.
Assuring quality surgical trainees within the confines of reduced work hours mandates reassessment of educational paradigms. Surgical simulators have been shown to be effective in teaching surgical residents, but their use is limited by cost and time constraints. The Nintendo Wii gaming console is inexpensive and allows natural hand movements similar to those performed in laparoscopy to guide game play. We hypothesize that surgical skills can be improved through take-home simulators adapted from affordable off-the-shelf gaming consoles. A total of 21 surgical residents participated in a prospective, controlled study. An experimental group of 14 surgical residents was assigned to play Marble Mania on the Nintendo Wii using a unique physical controller that interfaces with the WiiMote controller followed by a simulated electrocautery task. Seven residents assigned to the control group performed the electrocautery task without playing the game first. When compared with the control group, the experimental group performed the task with fewer errors and superior movement proficiency (P < 0.05). The experimental group demonstrated increased ambidexterity with improvement in proficiency of the nondominant hand over time. In conclusion, the Nintendo Wii gaming device along with Marble Mania serves as an effective take-home surgical simulator.
BACKGROUND: Contemporary learning technologies, such as massively multiplayer virtual worlds (MMVW), create new means for teaching and training. However, knowledge about the effectiveness of such training is incomplete, and there are no data regarding how students experience it. Cardiopulmonary resuscitation (CPR) is a field within medicine in high demand for new and effective training modalities.
OBJECTIVE: In addition to finding a feasible way to implement CPR training, our aim was to investigate how a serious game setting in a virtual world using avatars would influence medical students' subjective experiences as well as their retention of knowledge.
METHODS: An MMVW was refined and used in a study to train 12 medical students in CPR in 3-person teams in a repeated fashion 6 months apart. An exit questionnaire solicited reflections over their experiences. As the subjects trained in 4 CPR scenarios, measurements of self-efficacy, concentration, and mental strain were made in addition to measuring knowledge. Engagement modes and coping strategies were also studied. Parametric and nonparametric statistical analyses were carried out according to distribution of the data.
RESULTS: The majority of the subjects reported that they had enjoyed the training, had found it to be suitable, and had learned something new, although several asked for more difficult and complex scenarios as well as a richer virtual environment. The mean values for knowledge dropped during the 6 months from 8.0/10 to 6.25/10 (P = .002). Self-efficacy increased from before to after each of the two training sessions, from 5.9/7 to 6.5/7 (P = .01) after the first and from 6.0/7 to 6.7/7 (P = .03) after the second. The mean perceived concentration value increased from 54.2/100 to 66.6/100 (P = .006), and in general the mental strain was found to be low to moderate (mean = 2.6/10).
CONCLUSIONS: Using scenario-based virtual world team training with avatars to train medical students in multi-person CPR was feasible and showed promising results. Although we found no evidence of stimulated recall of CPR procedures in our test-retest study, the subjects were enthusiastic and reported increased concentration during the training. We also found that subjects' self-efficacy had increased after the training. Despite the need for further studies, these findings imply several possible uses of MMVW technology for future emergency medical training.
An interactive, video game-based training module, Burn Center, was developed to simulate the real-life emergency events of a mass casualty disaster scenario, involving in 40 victims.The game contains two components - triage and resuscitation. The goal of the triage game is to correctly stabilize, sort, tag and transport burn victims during a mass casualty event at a busy theme park. After complete the triage component, the player will then take on the role of a burn care provider, balancing the clinical needs of multiple burn patients through a 36-hour resuscitation period, using familiar computer-simulated hospital devices. Once complete, players of Burn Center will come away with applicable skills and knowledge of burn care, for both field triage and initial resuscitation of the burn patients.
We have begun development of an interactive, multi-player serious game for the purpose of training cardiac surgeons, fellows, and residents the series of steps comprising the Off-Pump Coronary Artery Bypass grafting (OPCAB) surgical procedure. It is hypothesized that by learning the OPCAB procedure in a "first-person-shooter gaming environment", trainees will have a much better understanding of the procedure than by traditional learning modalities. The serious game will allow for simulation parameters related to levels of fidelity to be easily adjusted so that the effect of fidelity on knowledge transfer can be examined.