Primary studies included in this systematic review

loading
17 articles (17 References) loading Revert Studify

Primary study

Unclassified

Journal Studies in health technology and informatics
Year 2011
Loading references information
We have begun development of an interactive, multi-player serious game for the purpose of training cardiac surgeons, fellows, and residents the series of steps comprising the Off-Pump Coronary Artery Bypass grafting (OPCAB) surgical procedure. It is hypothesized that by learning the OPCAB procedure in a "first-person-shooter gaming environment", trainees will have a much better understanding of the procedure than by traditional learning modalities. The serious game will allow for simulation parameters related to levels of fidelity to be easily adjusted so that the effect of fidelity on knowledge transfer can be examined.

Primary study

Unclassified

Journal Studies in health technology and informatics
Year 2011
Loading references information
Immersive online medical environments, with dynamic virtual patients, have been shown to be effective for scenario-based learning (1). However, ease of use and ease of access have been barriers to their use. We used feedback from prior evaluation of these projects to design and develop CliniSpace. To improve usability, we retained the richness of prior virtual environments but modified the user interface. To improve access, we used a Software-as-a-Service (SaaS) approach to present a richly immersive 3D environment within a web browser.

Primary study

Unclassified

Authors Taekman JM , Shelley K
Journal International anesthesiology clinics
Year 2010
Loading references information

Primary study

Unclassified

Journal Resuscitation
Year 2010
Loading references information
Objective: By exploiting video games technology, serious games strive to deliver affordable, accessible and usable interactive virtual worlds, supporting applications in training, education, marketing and design. The aim of the present study was to evaluate the effectiveness of such a serious game in the teaching of major incident triage by comparing it with traditional training methods. Design: Pragmatic controlled trial. Method: During Major Incident Medical Management and Support Courses, 91 learners were randomly distributed into one of two training groups: 44 participants practiced triage sieve protocol using a card-sort exercise, whilst the remaining 47 participants used a serious game. Following the training sessions, each participant undertook an evaluation exercise, whereby they were required to triage eight casualties in a simulated live exercise. Performance was assessed in terms of tagging accuracy (assigning the correct triage tag to the casualty), step accuracy (following correct procedure) and time taken to triage all casualties. Additionally, the usability of both the card-sort exercise and video game were measured using a questionnaire. Results: Tagging accuracy by participants who underwent the serious game training was significantly higher than those who undertook the card-sort exercise [Chi2 = 13.126, p= 0.02]. Step accuracy was also higher in the serious game group but only for the numbers of participants that followed correct procedure when triaging all eight casualties [Chi2 = 5.45, p= 0.0196]. There was no significant difference in time to triage all casualties (card-sort = 435 ± 74. s vs video game = 456 ± 62. s, p= 0.155). Conclusion: Serious game technologies offer the potential to enhance learning and improve subsequent performance when compared to traditional educational methods. © 2010 Elsevier Ireland Ltd.

Primary study

Unclassified

Journal The American surgeon
Year 2010
Loading references information
Assuring quality surgical trainees within the confines of reduced work hours mandates reassessment of educational paradigms. Surgical simulators have been shown to be effective in teaching surgical residents, but their use is limited by cost and time constraints. The Nintendo Wii gaming console is inexpensive and allows natural hand movements similar to those performed in laparoscopy to guide game play. We hypothesize that surgical skills can be improved through take-home simulators adapted from affordable off-the-shelf gaming consoles. A total of 21 surgical residents participated in a prospective, controlled study. An experimental group of 14 surgical residents was assigned to play Marble Mania on the Nintendo Wii using a unique physical controller that interfaces with the WiiMote controller followed by a simulated electrocautery task. Seven residents assigned to the control group performed the electrocautery task without playing the game first. When compared with the control group, the experimental group performed the task with fewer errors and superior movement proficiency (P < 0.05). The experimental group demonstrated increased ambidexterity with improvement in proficiency of the nondominant hand over time. In conclusion, the Nintendo Wii gaming device along with Marble Mania serves as an effective take-home surgical simulator.

Primary study

Unclassified

Journal Academic emergency medicine : official journal of the Society for Academic Emergency Medicine
Year 2010
Loading references information
Objectives: The objective of this study was to compare the relative impact of two simulation-based methods for training emergency medicine (EM) residents in disaster triage using the Simple Triage and Rapid Treatment (START) algorithm, full-immersion virtual reality (VR), and standardized patient (SP) drill. Specifically, are there differences between the triage performances and posttest results of the two groups, and do both methods differentiate between learners of variable experience levels? Methods: Fifteen Postgraduate Year 1 (PGY1) to PGY4 EM residents were randomly assigned to two groups: VR or SP. In the VR group, the learners were effectively surrounded by a virtual mass disaster environment projected on four walls, ceiling, and floor and performed triage by interacting with virtual patients in avatar form. The second group performed likewise in a live disaster drill using SP victims. Setting and patient presentations were identical between the two modalities. Resident performance of triage during the drills and knowledge of the START triage algorithm pre/post drill completion were assessed. Analyses included descriptive statistics and measures of association (effect size). Results: The mean pretest scores were similar between the SP and VR groups. There were no significant differences between the triage performances of the VR and SP groups, but the data showed an effect in favor of the SP group performance on the posttest. Conclusions: Virtual reality can provide a feasible alternative for training EM personnel in mass disaster triage, comparing favorably to SP drills. Virtual reality provides flexible, consistent, on-demand training options, using a stable, repeatable platform essential for the development of assessment protocols and performance standards. © 2010 by the Society for Academic Emergency Medicine.

Primary study

Unclassified

Journal Journal of medical Internet research
Year 2010
Loading references information
BACKGROUND: Contemporary learning technologies, such as massively multiplayer virtual worlds (MMVW), create new means for teaching and training. However, knowledge about the effectiveness of such training is incomplete, and there are no data regarding how students experience it. Cardiopulmonary resuscitation (CPR) is a field within medicine in high demand for new and effective training modalities. OBJECTIVE: In addition to finding a feasible way to implement CPR training, our aim was to investigate how a serious game setting in a virtual world using avatars would influence medical students' subjective experiences as well as their retention of knowledge. METHODS: An MMVW was refined and used in a study to train 12 medical students in CPR in 3-person teams in a repeated fashion 6 months apart. An exit questionnaire solicited reflections over their experiences. As the subjects trained in 4 CPR scenarios, measurements of self-efficacy, concentration, and mental strain were made in addition to measuring knowledge. Engagement modes and coping strategies were also studied. Parametric and nonparametric statistical analyses were carried out according to distribution of the data. RESULTS: The majority of the subjects reported that they had enjoyed the training, had found it to be suitable, and had learned something new, although several asked for more difficult and complex scenarios as well as a richer virtual environment. The mean values for knowledge dropped during the 6 months from 8.0/10 to 6.25/10 (P = .002). Self-efficacy increased from before to after each of the two training sessions, from 5.9/7 to 6.5/7 (P = .01) after the first and from 6.0/7 to 6.7/7 (P = .03) after the second. The mean perceived concentration value increased from 54.2/100 to 66.6/100 (P = .006), and in general the mental strain was found to be low to moderate (mean = 2.6/10). CONCLUSIONS: Using scenario-based virtual world team training with avatars to train medical students in multi-person CPR was feasible and showed promising results. Although we found no evidence of stimulated recall of CPR procedures in our test-retest study, the subjects were enthusiastic and reported increased concentration during the training. We also found that subjects' self-efficacy had increased after the training. Despite the need for further studies, these findings imply several possible uses of MMVW technology for future emergency medical training.

Primary study

Unclassified

Journal World journal of surgery
Year 2009
Loading references information
Background: Previous studies have shown a correlation between previous video game experience and performance in minimally invasive surgical simulators. The hypothesis is that systematic video game training with high visual-spatial demands and visual similarity to endoscopy would show a transfer effect on performance in virtual reality endoscopic surgical simulation. Methods: A prospective randomized study was performed. Thirty surgical novices were matched and randomized to five weeks of systematic video game training in either a first-person shooter game (Half Life) with high visual-spatial demands and visual similarities to endoscopy or a video game with mainly cognitive demands (Chessmaster). A matched control group (n = 10) performed no video game training during five weeks. Performance in two virtual reality endoscopic surgical simulators (MIST-VR and GI Mentor II) was measured pre- and post-training. Before simulator training we also controlled for students' visual-spatial ability, visual working memory, age, and previous video game experience. Results: The group training with Half Life showed significant improvement in two GI Mentor II variables and the MIST-VR task MD level medium. The group training with Chessmaster only showed an improvement in the MIST-VR task. No effect was observed in the control group. As recently shown in other studies, current and previous video game experience was important for simulator performance. Conclusions: Systematic video game training improved surgical performance in advanced virtual reality endoscopic simulators. The transfer effect increased when increasing visual similarity. The performance in intense, visual-spatially challenging video games might be a predictive factor for the outcome in surgical simulation. © 2009 Société Internationale de Chirurgie.

Primary study

Unclassified

Journal Studies in health technology and informatics
Year 2009
Loading references information
An interactive, video game-based training module, Burn Center, was developed to simulate the real-life emergency events of a mass casualty disaster scenario, involving in 40 victims.The game contains two components - triage and resuscitation. The goal of the triage game is to correctly stabilize, sort, tag and transport burn victims during a mass casualty event at a busy theme park. After complete the triage component, the player will then take on the role of a burn care provider, balancing the clinical needs of multiple burn patients through a 36-hour resuscitation period, using familiar computer-simulated hospital devices. Once complete, players of Burn Center will come away with applicable skills and knowledge of burn care, for both field triage and initial resuscitation of the burn patients.

Primary study

Unclassified

Journal Simulation in healthcare : journal of the Society for Simulation in Healthcare
Year 2008
Loading references information
Background: Training interdisciplinary trauma teams to work effectively together using simulation technology has led to a reduction in medical errors in emergency department, operating room, and delivery room contexts. High-fidelity patient simulators (PSs)-the predominant method for training healthcare teams-are expensive to develop and implement and require that trainees be present in the same place at the same time. In contrast, online computer-based simulators are more cost effective and allow simultaneous participation by students in different locations and time zones. In this pilot study, the researchers created an online virtual emergency department (Virtual ED) for team training in crisis management, and compared the effectiveness of the Virtual ED with the PS. We hypothesized that there would be no difference in learning outcomes for graduating medical students trained with each method. Methods: In this pilot study, we used a pretest-posttest control group, experimental design in which 30 subjects were randomly assigned to either the Virtual ED or the PS system. In the Virtual ED each subject logged into the online environment and took the role of a team member. Four-person teams worked together in the Virtual ED, communicating in real time with live voice over Internet protocol, to manage computercontrolled patients who exhibited signs and symptoms of physical trauma. Each subject had the opportunity to be the team leader. The subjects' leadership behavior as demonstrated in both a pretest case and a posttest case was assessed by 3 raters, using a behaviorally anchored scale. In the PS environment, 4-person teams followed the same research protocol, using the same clinical scenarios in a Simulation Center. Guided by the Emergency Medicine Crisis Resource Management curriculum, both the Virtual ED and the PS groups applied the basic principles of team leadership and trauma management (Advanced Trauma Life Support) to manage 6 trauma cases-a pretest case, 4 training cases, and a posttest case. The subjects in each group were assessed individually with the same simulation method that they used for the training cases. Results: Subjects who used either the Virtual ED or the PS showed significant improvement in performance between pretest and posttest cases (P < 0.05). In addition, there was no significant difference in subjects' performance between the 2 types of simulation, suggesting that the online Virtual ED may be as effective for learning team skills as the PS, the method widely used in Simulation Centers. Data on usability and attitudes toward both simulation methods as learning tools were equally positive. Discussion: This study shows the potential value of using virtual learning environments for developing medical students' and resident physicians' team leadership and crisis management skills. © 2008 Society for Simulation in Healthcare.