OBJECTIVES: Corticosteroids may be beneficial in sepsis, but uncertainty remains over their effects in severe influenza. This systematic review updates the current evidence regarding corticosteroids in the treatment of influenza and examines the effect of dose on outcome.
DATA SOURCES: Electronic databases (MEDLINE, EMBASE, CINAHL, LILACS, CENTRAL, and Web of Science) and trial registries were searched to October 2018 for randomized controlled trials, quasi-experimental designs, and observational cohort studies reporting corticosteroid versus no corticosteroid treatment in individuals with influenza.
STUDY SELECTION AND DATA EXTRACTION: Two researchers independently assessed studies for inclusion. Risk of bias was assessed using the Cochrane Risk of Bias tool (randomized controlled trials) or Newcastle-Ottawa Scale (observational studies). Where appropriate, we estimated the effect of corticosteroids by random-effects meta-analyses using the generic inverse variance method. Meta-regression analysis was used to assess the association of corticosteroid dose and mortality.
DATA SYNTHESIS: We identified 30 eligible studies, all observational apart from one randomized controlled trial. Twenty-one observational studies were included in the meta-analysis of mortality, which suggested an adverse association with corticosteroid therapy (odds ratio, 3.90; 95% CI, 2.31-6.60; 15 studies; adjusted hazard ratio, 1.49; 95% CI, 1.09-2.02; six studies). Risk of bias assessment was consistent with potential confounding by indication. Pooled analysis of seven studies showed increased odds of hospital-acquired infection in people treated with corticosteroids (unadjusted odds ratio, 2.74; 95% CI, 1.51-4.95). Meta-regression of the effect of dose on mortality did not reveal an association, but reported doses of corticosteroids in included studies were high (mostly > 40 mg methylprednisolone [or equivalent] per day).
CONCLUSIONS: Corticosteroid treatment in influenza is associated with increased mortality and hospital-acquired infection, but the evidence relates mainly to high corticosteroid doses and is of low quality with potential confounding by indication a major concern.
BACKGROUND: Specific treatments for influenza are limited to neuraminidase inhibitors and adamantanes. Corticosteroids show evidence of benefit in sepsis and related conditions, most likely due to their anti-inflammatory and immunomodulatory properties. Although commonly prescribed for severe influenza, there is uncertainty over their potential benefits or harms. This is an update of a review first published in 2016.
OBJECTIVES: To systematically assess the effectiveness and potential adverse effects of corticosteroids as adjunctive therapy in the treatment of influenza, taking into account differences in timing and doses of corticosteroids.
SEARCH METHODS: We searched CENTRAL (2018, Issue 9), which includes the Cochrane Acute Respiratory infections Group's Specialised Register, MEDLINE (1946 to October week 1, 2018), Embase (1980 to 3 October 2018), CINAHL (1981 to 3 October 2018), LILACS (1982 to 3 October 2018), Web of Science (1985 to 3 October 2018), abstracts from the last three years of major infectious disease and microbiology conferences, and references of included articles. We also searched the World Health Organization International Clinical Trials Registry Platform, ClinicalTrials.gov, and the ISRCTN registry on 3 October 2018.
SELECTION CRITERIA: We included randomised controlled trials (RCTs), quasi-RCTs, and observational studies that compared corticosteroid treatment with no corticosteroid treatment for influenza or influenza-like illness. We did not restrict studies by language of publication, influenza subtypes, clinical setting, or age of participants. We selected eligible studies in two stages: sequential examination of title and abstract, followed by full text.
DATA COLLECTION AND ANALYSIS: Two review authors independently extracted data and assessed risk of bias. We pooled estimates of effect using a random-effects model, where appropriate. We assessed heterogeneity using the I2 statistic and assessed the certainty of the evidence using the GRADE framework.
MAIN RESULTS: This updated review includes 30 studies (one RCT with two arms and 29 observational studies) with a total of 99,224 participants. We included 19 studies in the original review (n = 3459), all of which were observational, with 13 studies included in the meta-analysis for mortality. We included 12 new studies in this update (one RCT and 11 observational studies), and excluded one study in the original review as it has been superceded by a more recent analysis. Twenty-one studies were included in the meta-analysis (9536 individuals), of which 15 studied people infected with 2009 influenza A H1N1 virus (H1N1pdm09). Data specific to mortality were of very low quality, based predominantly on observational studies, with inconsistent reporting of variables potentially associated with the outcomes of interest, differences between studies in the way in which they were conducted, and with the likelihood of potential confounding by indication. Reported doses of corticosteroids used were high, and indications for their use were not well reported. On meta-analysis, corticosteroid therapy was associated with increased mortality (odds ratio (OR) 3.90, 95% confidence interval (CI) 2.31 to 6.60; I2 = 68%; 15 studies). A similar increase in risk of mortality was seen in a stratified analysis of studies reporting adjusted estimates (OR 2.23, 95% CI 1.54 to 3.24; I2 = 0%; 5 studies). An association between corticosteroid therapy and increased mortality was also seen on pooled analysis of six studies which reported adjusted hazard ratios (HRs) (HR 1.49, 95% CI 1.09 to 2.02; I2 = 69%). Increased odds of hospital-acquired infection related to corticosteroid therapy were found on pooled analysis of seven studies (pooled OR 2.74, 95% CI 1.51 to 4.95; I2 = 90%); all were unadjusted estimates, and we graded the data as of very low certainty.
AUTHORS' CONCLUSIONS: We found one RCT of adjunctive corticosteroid therapy for treating people with community-acquired pneumonia, but the number of people with laboratory-confirmed influenza in the treatment and placebo arms was too small to draw conclusions regarding the effect of corticosteroids in this group, and we did not include it in our meta-analyses of observational studies. The certainty of the available evidence from observational studies was very low, with confounding by indication a major potential concern. Although we found that adjunctive corticosteroid therapy is associated with increased mortality, this result should be interpreted with caution. In the context of clinical trials of adjunctive corticosteroid therapy in sepsis and pneumonia that report improved outcomes, including decreased mortality, more high-quality research is needed (both RCTs and observational studies that adjust for confounding by indication). The currently available evidence is insufficient to determine the effectiveness of corticosteroids for people with influenza.
BACKGROUND: The effect of corticosteroids on clinical outcomes in patients with influenza pneumonia remains controversial. We aimed to further evaluate the influence of corticosteroids on mortality in adult patients with influenza pneumonia by comparing corticosteroid-treated and placebo-treated patients.
METHODS: The PubMed, Embase, Medline, Cochrane Central Register of Controlled Trials (CENTRAL), and Information Sciences Institute (ISI) Web of Science databases were searched for all controlled studies that compared the effects of corticosteroids and placebo in adult patients with influenza pneumonia. The primary outcome was mortality, and the secondary outcomes were mechanical ventilation (MV) days, length of stay in the intensive care unit (ICU LOS), and the rate of secondary infection.
RESULTS: Ten trials involving 6548 patients were pooled in our final analysis. Significant heterogeneity was found in all outcome measures except for ICU LOS (I2 = 38%, P = 0.21). Compared with placebo, corticosteroids were associated with higher mortality (risk ratio [RR] 1.75, 95% confidence interval [CI] 1.30 ~ 2.36, Z = 3.71, P = 0.0002), longer ICU LOS (mean difference [MD] 2.14, 95% CI 1.17 ~ 3.10, Z = 4.35, P < 0.0001), and a higher rate of secondary infection (RR 1.98, 95% CI 1.04 ~ 3.78, Z = 2.08, P = 0.04) but not MV days (MD 0.81, 95% CI - 1.23 ~ 2.84, Z = 0.78, P = 0.44) in patients with influenza pneumonia.
CONCLUSIONS: In patients with influenza pneumonia, corticosteroid use is associated with higher mortality.
TRIAL REGISTRATION: PROSPERO (ID: CRD42018112384 ).
This meta-analysis synthesized current evidence from 10 trials to evaluate the association between steroid therapy and osteonecrosis incidence in patients with severe acute respiratory syndrome (SARS). Our results suggest that higher cumulative doses and longer treatment durations of steroids are more likely to lead to the development of osteonecrosis in SARS patients.
INTRODUCTION: The link between steroid treatment and the risk of osteonecrosis in SARS patients remains unknown. The present meta-analysis aimed to examine the dose-response association between steroid therapy and osteonecrosis incidence in SARS patients. The sex differences in the development of steroid-induced osteonecrosis were also examined.
METHODS: We searched PubMed, Web of Science, CNKI, and WANFANG for studies that involved steroid therapy and reported osteonecrosis data in SARS patients. Two authors independently extracted the data from the individual studies, and the rate ratio (RR) of osteonecrosis was calculated using random-effect models.
RESULTS: Ten studies with 1137 recovered SARS patients met the inclusion criteria. Close relationships between osteonecrosis incidence and both the cumulative dose and treatment duration of steroids were observed. The summary RR of osteonecrosis was 1.57 (95% confidence interval (CI) 1.30-1.89, p < 0.001) per 5.0 g increase in the cumulative dose of steroids and was 1.29 (95% CI 1.09-1.53, p = 0.003) for each 10-day increment of increase in treatment duration. The relationship was non-linear (p non-linear < 0.001 and p non-linear = 0.022). There were no significant differences in the risk of developing osteonecrosis between the male and female patients (RR 0.01, 95% CI -0.03 to 0.06, p = 0.582).
CONCLUSIONS: SARS patients who received higher cumulative doses and longer treatment durations of steroids were more likely to develop osteonecrosis, and there were no sex differences in this dose-dependent side effect. Our findings suggest that it is important to reduce osteonecrosis risk by modifying the cumulative dose and the treatment duration of steroids in SARS patients.
INTRODUCTION: Corticosteroids are used empirically in influenza A (H1N1) treatment despite lack of clear evidence for effective treatment. This study aims to assess the efficacy of corticosteroids treatment for H1N1 infection.
METHODS: Systematic review and meta-analysis were used to estimate the efficacy of corticosteroids for the prevention of mortality in H1N1 infection. Databases searched included MEDLINE, EMBASE, PubMed, Cochrane Central Register of Controlled Clinical Trials and so on, and bibliographies of retrieved articles, from April 2009 to October 2014. We included both cohort studies and case-control studies reported in English or Chinese that compared treatment effects between corticosteroids and non-corticosteroids therapy in inpatients with H1N1 virus infection. Cohort studies employed mortality as outcome, and case-control studies employed deaths as cases and survivors as controls; both were assessed in this meta-analysis.
RESULTS: In total twenty-three eligible studies were included. Both cohort studies (nine studies, n = 1,405) and case-control studies (14 studies, n = 4,700) showed a similar trend toward increased mortality (cohort studies relative risk was 1.85 with 95% confidence interval (CI) 1.46 to 2.33; case-control studies odds ratio was 4.22 with 95% CI 3.10 to 5.76). The results from both subgroup analyses and sensitive analyses were consistent with each other, showing that steroid treatment is associated with mortality. However, considering the fact that corticosteroids were tend to be used in sickest case-patients and heterogeneity was observed between studies, we cannot make a solid conclusion.
CONCLUSIONS: Available evidence did not support the use of corticosteroids as standard care for patients with severe influenza. We conclude that further research is required.
BACKGROUND: Most studies have reported that corticosteroid therapy adversely influences influenza-related outcomes.
METHODS: Electronic databases were searched from inception to March 2013 for experimental and observational studies investigating systemic corticosteroid therapy for presumed influenza-associated complications. Meta-analysis of Observational Studies in Epidemiology guidelines were adopted. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using random-effects models, and heterogeneity was assessed using the I(2) statistic. Quality of evidence was assessed using the Grading Assessment, Development, and Evaluation system.
RESULTS: We identified 16 eligible studies (3039 individuals), all of which were observational; 10 (1497 individuals) were included in the meta-analysis of mortality, of which 9 studied patients with 2009 pandemic influenza A virus subtype H1N1. Risk of bias was greatest in the comparability domain of the Newcastle-Ottawa scale, consistent with potential confounding by indication, and data specific to mortality were of low quality. Meta-analysis found an increased odds of mortality (OR, 2.12; 95% CI, 1.36-3.29) associated with corticosteroid therapy. Subgroup analysis of adjusted estimates from 4 studies with very low statistical heterogeneity found a similar association (OR, 2.58; 95% CI, 1.39-4.79).
CONCLUSIONS: No completed clinical trials were identified. Evidence from observational studies, with important limitations, suggests that corticosteroid therapy for presumed influenza-associated complications is associated with increased mortality.
Administration of corticosteroids to patients affected by influenza virus, especially pandemic avian influenza virus, although relatively common, remains controversial. A systematic review and meta-analysis was performed to assess the impact of corticosteroid treatment on outcomes of patients with influenza virus infection. The PubMed, EMBASE, Web of Science and Cochrane Library databases were searched up to February, 2015. Studies comparing corticosteroid treatment with no corticosteroid treatment in patients with influenza virus infection were included. The primary outcomes assessed were the association of mortality and nosocomial infection with corticosteroid treatment. Two authors independently extracted the data. ORs and weighted mean differences (WMDs) were used to describe dichotomous data and continuous data, respectively. Nineteen studies with 4916 patients were included in this meta-analysis. The results showed that corticosteroid treatment was significantly associated with mortality (OR 1.98, 95% CI 1.62-2.43, p < 0.00001) and nosocomial infection (OR 3.16, 95% CI 2.09-4.78, p < 0.00001). The durations of mechanical ventilation (WMD 3.82, 95% CI 1.49-6.15, p 0.001) and intensive-care unit stay (WMD 4.78, 95% CI 2.27-7.29, p 0.0002) were both markedly longer in the corticosteroid treatment group than in the control group. These findings suggest that routine steroid use may not be ideal for influenza virus infection. However, these results are derived from observational studies, with some important biases. They should be examined in future sufficiently powered randomized trials.
Corticosteroids may be beneficial in sepsis, but uncertainty remains over their effects in severe influenza. This systematic review updates the current evidence regarding corticosteroids in the treatment of influenza and examines the effect of dose on outcome.
DATA SOURCES:
Electronic databases (MEDLINE, EMBASE, CINAHL, LILACS, CENTRAL, and Web of Science) and trial registries were searched to October 2018 for randomized controlled trials, quasi-experimental designs, and observational cohort studies reporting corticosteroid versus no corticosteroid treatment in individuals with influenza.
STUDY SELECTION AND DATA EXTRACTION:
Two researchers independently assessed studies for inclusion. Risk of bias was assessed using the Cochrane Risk of Bias tool (randomized controlled trials) or Newcastle-Ottawa Scale (observational studies). Where appropriate, we estimated the effect of corticosteroids by random-effects meta-analyses using the generic inverse variance method. Meta-regression analysis was used to assess the association of corticosteroid dose and mortality.
DATA SYNTHESIS:
We identified 30 eligible studies, all observational apart from one randomized controlled trial. Twenty-one observational studies were included in the meta-analysis of mortality, which suggested an adverse association with corticosteroid therapy (odds ratio, 3.90; 95% CI, 2.31-6.60; 15 studies; adjusted hazard ratio, 1.49; 95% CI, 1.09-2.02; six studies). Risk of bias assessment was consistent with potential confounding by indication. Pooled analysis of seven studies showed increased odds of hospital-acquired infection in people treated with corticosteroids (unadjusted odds ratio, 2.74; 95% CI, 1.51-4.95). Meta-regression of the effect of dose on mortality did not reveal an association, but reported doses of corticosteroids in included studies were high (mostly > 40 mg methylprednisolone [or equivalent] per day).
CONCLUSIONS:
Corticosteroid treatment in influenza is associated with increased mortality and hospital-acquired infection, but the evidence relates mainly to high corticosteroid doses and is of low quality with potential confounding by indication a major concern.