OBJECTIVE: According to the US Affordable Care Act, restaurant chains are required to provide energy (calorie) and other nutrition information on their menu. The current study examined the impact of menu labelling containing calorie information and recommended daily calorie intake, along with subjective nutrition knowledge, on intention to select lower-calorie foods prior to the implementation of the Affordable Care Act.
DESIGN: Full factorial experimental design with participants exposed to four variants of a sample menu in a 2 (presence v. absence of calorie information) ×2 (presence v. absence of recommended daily calorie intake).
SETTING: Large, public university in the Southwest USA.
SUBJECTS: Primarily undergraduate college students.
RESULTS: Majority of participants were 19-23 years of age (mean 21·8 (sd 3·6) years). Menu information about calorie content and respondents' subjective nutrition knowledge had a significantly positive impact on students' intention to select lower-calorie foods (β=0·24, P<0·001 and β=0·33, P<0·001, respectively); however, recommended daily calorie intake information on the menu board did not influence students' intention to select lower-calorie foods (β=0·10, P=0·105). Gender played a significant role on purchase intent for lower-calorie menu items, with females more affected by the calorie information than males (β=0·37, P<0·001).
CONCLUSIONS: Findings support the role menu labelling can play in encouraging a healthier lifestyle for college students. College students who are Generation Y desire healthier menu options and accept nutritional labels on restaurant menus as a way to easily and expediently obtain nutrition information.
The purpose of this study was to investigate the impact of nutritional labelling on energy intake, appetite perceptions and attitudes towards food. During a 10-d period, seventy normal-weight (BMI<25 kg/m2) and seventy-one obese women (BMI≥30 kg/m2) were given three meals per d under ad libitum conditions. Participants were randomly assigned to one of three experimental labelling groups in which the only difference was the label posted on lunch meal entrée: (1) low-fat label, (2) energy label (energy content of the entrée and average daily needs) and (3) no label (control). Average energy intake was calculated by weighing all foods before v. after daily consumption. Hunger and fullness perceptions were rated on visual analogue scales immediately before and after each meal. Satiety efficiency was assessed through the calculation of the satiety quotient (SQ). The appreciation and perceived healthiness of the lunch entrées were rated on eight-point Likert scales. There was no difference in energy intake, SQ and attitudes towards food between the three labelling groups. Fasting hunger perception was higher in the low-fat label group compared with the two others groups (P=0·0037). No interactions between labelling groups and BMI categories were observed. In conclusion, although labelling does not seem to influence energy intake, a low-fat label may increase women’s fasting hunger perceptions compared with an energy label or no label.
OBJECTIVES: Labelling of food from fast food restaurants at point-of-purchase has been suggested as one strategy to reduce population energy consumption and contribute to reductions in obesity prevalence. The aim of this study was to examine the effects of energy and single traffic light labelling systems on the energy content of child and adult intended food purchases. Participants and methods: The study employed a randomised controlled trial design. English speaking parents of children aged between three and 12years were recruited from an existing research cohort. Participants were mailed one of three hypothetical fast food menus. Menus differed in their labelling technique—either energy labels, single traffic light labels, or a no-label control. Participants then completed a telephone survey which assessed intended food purchases for both adult and child. The primary trial outcome was total energy of intended food purchase. RESULTS: A total of 329 participants completed the follow-up telephone interview. Eighty-two percent of the energy labelling group and 96% of the single traffic light labelling group reported noticing labelling information on their menu. There were no significant differences in total energy of intended purchases of parents, or intended purchases made by parents for children, between the menu labelling groups, or between menu labelling groups by socio-demographic subgroups. CONCLUSIONS: This study provided no evidence to suggest that energy labelling or single traffic light labelling alone were effective in reducing the energy of fast food items selected from hypothetical fast food menus for purchase. Additional complementary public health initiatives promoting the consumption of healthier foods identified by labelling, and which target other key drivers of menu item selection in this setting may be required. (PsycInfo Database Record (c) 2021 APA, all rights reserved)
BACKGROUND: Studies rarely find fewer calories purchased following calorie labeling implementation. However, few studies consider whether estimates of the number of calories purchased improved following calorie labeling legislation.
FINDINGS: Researchers surveyed customers and collected purchase receipts at fast food restaurants in the United States cities of Philadelphia (which implemented calorie labeling policies) and Baltimore (a matched comparison city) in December 2009 (pre-implementation) and June 2010 (post-implementation). A difference-in-difference design was used to examine the difference between estimated and actual calories purchased, and the odds of underestimating calories.Participants in both cities, both pre- and post-calorie labeling, tended to underestimate calories purchased, by an average 216-409 calories. Adjusted difference-in-differences in estimated-actual calories were significant for individuals who ordered small meals and those with some college education (accuracy in Philadelphia improved by 78 and 231 calories, respectively, relative to Baltimore, p = 0.03-0.04). However, categorical accuracy was similar; the adjusted odds ratio [AOR] for underestimation by >100 calories was 0.90 (p = 0.48) in difference-in-difference models. Accuracy was most improved for subjects with a BA or higher education (AOR = 0.25, p < 0.001) and for individuals ordering small meals (AOR = 0.54, p = 0.001). Accuracy worsened for females (AOR = 1.38, p < 0.001) and for individuals ordering large meals (AOR = 1.27, p = 0.028).
CONCLUSIONS: We concluded that the odds of underestimating calories varied by subgroup, suggesting that at some level, consumers may incorporate labeling information.
The goal of the current study was to determine whether provision of brand and caloric information affects sensory perception and consumption of a food in restrained (n=84) and unrestrained eaters (n=104). Using a between-subjects 2 × 2 × 3 design, female restrained and unrestrained eaters were asked to taste and rate a cookie that was labeled with a brand associated with healthful eating (Kashi(®)) or one associated with unhealthful eating (Nabisco(®)). Additionally, some participants were presented with a nutrition label alongside the brand name indicating that one serving contained 130 calories (Low-Calorie Condition), or 260 calories (High-Calorie Condition). The remaining participants were not shown a nutrition label (No Label Condition). Results indicated that those in the No Label or the High-Calorie Condition perceived the healthful branded cookie to have a better flavor than those who received the unhealthful branded cookie regardless of their restraint status. However, restrained eaters in the No Label Condition consumed more of the healthful than the unhealthful branded cookie, whereas those in the Low-Calorie Condition consumed more of the unhealthful than the healthful branded cookie. In contrast, unrestrained eaters ate more of the healthful branded cookie regardless of the caloric information provided. Thus, although restrained and unrestrained eaters' perceptions are similarly affected by branding and caloric information, brands and caloric information interact to affect restrained eaters' consumption. This study reveals that labeling foods as low calorie may create a halo effect which may lead to over-consumption of these foods in restrained eaters.
According to the US Affordable Care Act, restaurant chains are required to provide energy (calorie) and other nutrition information on their menu. The current study examined the impact of menu labelling containing calorie information and recommended daily calorie intake, along with subjective nutrition knowledge, on intention to select lower-calorie foods prior to the implementation of the Affordable Care Act.
DESIGN:
Full factorial experimental design with participants exposed to four variants of a sample menu in a 2 (presence v. absence of calorie information) ×2 (presence v. absence of recommended daily calorie intake).
SETTING:
Large, public university in the Southwest USA.
SUBJECTS:
Primarily undergraduate college students.
RESULTS:
Majority of participants were 19-23 years of age (mean 21·8 (sd 3·6) years). Menu information about calorie content and respondents' subjective nutrition knowledge had a significantly positive impact on students' intention to select lower-calorie foods (β=0·24, P<0·001 and β=0·33, P<0·001, respectively); however, recommended daily calorie intake information on the menu board did not influence students' intention to select lower-calorie foods (β=0·10, P=0·105). Gender played a significant role on purchase intent for lower-calorie menu items, with females more affected by the calorie information than males (β=0·37, P<0·001).
CONCLUSIONS:
Findings support the role menu labelling can play in encouraging a healthier lifestyle for college students. College students who are Generation Y desire healthier menu options and accept nutritional labels on restaurant menus as a way to easily and expediently obtain nutrition information.