Primary studies included in this systematic review

loading
31 articles (31 References) loading Revert Studify

Primary study

Unclassified

期刊 European journal of clinical nutrition
Year 2013
Loading references information
BACKGROUND/OBJECTIVE: Evidence is accumulating that the long-chain PUFA (LCPUFA) are associated with offspring growth and body composition. We investigated the relationship between LCPUFAs in red blood cells (RBCs) of pregnant women/breastfeeding mothers and umbilical cord RBCs of their neonates with infant growth and body composition ≤ 1 year of age. SUBJECTS/METHODS: In an open-label randomized, controlled trial, 208 healthy pregnant women received a dietary intervention (daily supplementation with 1200 mg n-3 LCPUFAs and dietary counseling to reduce arachidonic acid (AA) intake) from the 15th week of gestation until 4 months of lactation or followed their habitual diet. Fatty acids of plasma phospholipids (PLs) and RBCs from maternal and cord blood were determined and associated with infant body weight, body mass index (BMI), lean body mass and fat mass assessed by skinfold thickness measurements and ultrasonography. RESULTS: Dietary intervention significantly reduced the n-6/n-3 LCPUFA ratio in maternal and cord-blood plasma PLs and RBCs. Maternal RBCs docosahexaenoic acid (DHA), n-3 LCPUFAs and n-6 LCPUFAs at the 32nd week of gestation were positively related to birth weight. Maternal n-3 LCPUFAs, n-6 LCPUFAs and AA were positively associated with birth length. Maternal RBCs AA and n-6 LCPUFAs were significantly negatively related to BMI and Ponderal Index at 1 year postpartum, but not to fat mass. CONCLUSION: Maternal DHA, AA, total n-3 LCPUFAs and n-6 LCPUFAs might serve as prenatal growth factors, while n-6 LCPUFAs also seems to regulate postnatal growth. The maternal n-6/n-3 LCPUFA ratio does not appear to have a role in adipose tissue development during early postnatal life.

Primary study

Unclassified

期刊 Pediatric research
Year 2013
Loading references information
BACKGROUND: There is some evidence that the n-6/n-3 long-chain polyunsaturated fatty acids (LCPUFAs) ratio in early nutrition, and thus in breast milk, could influence infant body composition. METHODS: In an open-label randomized controlled trial (RCT), 208 healthy pregnant women were allocated to a dietary intervention (supplementation with 1,200 mg n-3 LCPUFAs per day and instructions to reduce arachidonic acid (AA) intake) from the 15th wk of gestation until 4 mo of lactation or to follow their habitual diet. Breast milk LCPUFAs at 6 wk and 4 mo postpartum were related to infant body composition assessed by skinfold thickness (SFT) measurements and ultrasonography during the first year of life. RESULTS: Dietary intervention significantly reduced breast milk n-6/n-3 LCPUFAs ratio. In the whole sample, early breast milk docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and n-3 LCPUFAs at 6 wk postpartum were positively related to the sum of four SFT measurements at age 1. Breast milk AA and n-6 LCPUFAs at 6 wk postpartum were negatively associated with weight, BMI, and lean body mass (LBM) up to 4 mo postpartum. CONCLUSION: Breast milk n-3 LCPUFAs appear to stimulate fat mass growth over the first year of life, whereas AA seems to be involved in the regulation of overall growth, especially in the early postpartum period.

Primary study

Unclassified

期刊 The American journal of clinical nutrition
Year 2012
Loading references information
BACKGROUND: The composition of long-chain PUFAs (LCPUFAs) in the maternal diet may affect obesity risk in the mother's offspring. OBJECTIVE: We hypothesized that a reduction in the n-6 (omega-6):n-3 (omega-3) LCPUFA ratio in the diet of pregnant women and breastfeeding mothers may prevent expansive adipose tissue growth in their infants during the first year of life. DESIGN: In a randomized controlled trial, 208 healthy pregnant women were randomly assigned to an intervention (1200 mg n-3 LCPUFAs as a supplement per day and a concomitant reduction in arachidonic acid intake) or a control diet from the 15th wk of pregnancy to 4 mo of lactation. The primary outcome was infant fat mass estimated by skinfold thickness (SFT) measurements at 4 body sites at 3-5 d, 6 wk, and 4 and 12 mo postpartum. Secondary endpoints included sonographic assessment of abdominal subcutaneous and preperitoneal fat, fat distribution, and child growth. RESULTS: Infants did not differ in the sum of their 4 SFTs at <=1 y of life [intervention: 24.1 ± 4.4 mm (n = 85); control: 24.1 ± 4.1 mm (n = 80); mean difference: -0.0 mm (95% CI: -1.3, 1.3 mm)] or in growth. Likewise, longitudinal ultrasonography showed no significant differences in abdominal fat mass or fat distribution. CONCLUSIONS: We showed no evidence that supplementation with n-3 fatty acids and instructions to reduce arachidonic acid intake during pregnancy and lactation relevantly affects fat mass in offspring during the first year of life. Prospective long-term studies are needed to explore the efficacy of this dietary approach for primary prevention. This trial was registered at clinicaltrials.gov as NCT00362089.

Primary study

Unclassified

期刊 Journal of perinatal medicine
Year 2012
Loading references information
Fetuses and breastfed children depend on the maternal docosahexaenoic acid (DHA) supply, which might have long-lasting consequences. We studied the growth of 6-year-old children whose mothers received supplemental DHA from midpregnancy to 3 months after delivery. One hundred and forty-four pregnant women had been randomized to receive one of three vitamin-mineral supplements, one supplying an additional 200 mg/day DHA. Of the original sample, 120 children were measured at age 6 years with standardized methods. As one objective of the follow-up was to investigate the DHA influence on normal growth, the DHA group was compared with the pooled controls after exclusion of five premature infants. The weight, length, body mass index (BMI), head circumference, and skin-fold thickness at 6 years were similar in the 41 children of the DHA group and the 74 controls. Longitudinally, the BMI z-scores of the DHA group increased up at a later age than that of the controls. We found a highly significant negative correlation between height at 6 years and the increase in red blood cell DHA concentration of mothers from 22 to 37 weeks of pregnancy. We conclude that DHA supplements during midpregnancy corrected a low maternal DHA status (which correlated with children's height) and was favorable in regard to the BMI development up to 6 years.

Primary study

Unclassified

期刊 Lipids
Year 2011
Loading references information
Early accumulation of n-3 long-chain PUFA (LCPUFA) in the brain may contribute to differences in later cognitive abilities. In this study, our objective was to examine whether fish oil (FO) supplementation during lactation affects processing speed, working memory, inhibitory control, and socioemotional development at 7 years. Danish mothers (n = 122) were randomized to FO [1.5 g/d n-3 LCPUFA] or olive oil (OO) supplementation during the first 4 months of lactation. The trial also included a high-fish intake (HFI) reference group (n = 53). Ninety-eight children were followed-up with an assessment of processing speed, an age-appropriate Stroop task, and the Strength and Difficulties Questionnaire at 7 year. A group effect of the intervention (FO vs. OO) was found in prosocial behavior scores; this negative effect was carried by the boys. Exploratory analyses including all participants revealed the speed of processing scores were predicted by maternal n-3 LCPUFA intake during the intervention period (negative relation) and maternal education (positive relation). Stroop scores indicative of working memory and inhibitory control were predicted by infant erythrocyte DHA status at 4 months of age (negative relation). Early fish oil supplementation may have a negative effect on later cognitive abilities. Speed of processing and inhibitory control/working memory are differentially affected, with speed of processing showing effects of fish oil intake as a whole, whereas inhibitory control/working memory was related more specifically to DHA status.

Primary study

Unclassified

期刊 Pediatric research
Year 2011
Loading references information
We investigated whether the previously reported preventive effect of maternal ω-3 fatty acid supplementation on IgE-associated allergic disease in infancy may be mediated by facilitating a balanced circulating Th2/Th1 chemokine profile in the infant. Vaccine-induced immune responses at 2 y of age were also evaluated. Pregnant women, at risk of having an allergic infant, were randomized to daily supplementation with 1.6 g eicosapentaenoic acid and 1.1 g docosahexaenoic acid or placebo from the 25th gestational week through 3.5 mo of breastfeeding. Infant plasma was analyzed for chemokines (cord blood, 3, 12, 24 mo) and anti-tetanus and anti-diphtheria IgG (24 mo). High Th2-associated CC-chemokine ligand 17 (CCL17) levels were associated with infant allergic disease (p < 0.05). In infants without, but not with, maternal history of allergy, the ω-3 supplementation was related to lower CCL17/CXC-chemokine ligand 11 (CXCL11) (Th2/Th1) ratios (p < 0.05). Furthermore, in nonallergic, but not in allergic infants, ω-3 supplementation was linked with higher Th1-associated CXCL11 levels (p < 0.05), as well as increased IgG titers to diphtheria (p = 0.01) and tetanus (p = 0.05) toxins. Thus, the prospect of balancing the infant immune system toward a less Th2-dominated response, by maternal ω-3 fatty acid supplementation, seems to be influenced by allergic status.

Primary study

Unclassified

期刊 The British journal of nutrition
Year 2010
Loading references information
DHA and arachidonic acid (AA) are important for neurodevelopment. A traditional neonatal neurological examination and the evaluation of general movement quality are sensitive techniques for assessing neurodevelopment in young infants. Mildly abnormal general movements at 3 months have been associated with a non-optimal current brain condition. We investigated whether supplementation of DHA during pregnancy and lactation influences the infant's brain development and whether additional AA modulates this effect. Healthy women were randomly assigned to DHA (220mg/d, n 42), DHA+AA (220mg each/d, n 41) or control (n 36), from about week 17 (range 14-20 weeks) of pregnancy until 12 weeks postpartum. The control and the DHA+AA groups had approximately comparable dietary DHA/AA ratios. The standardised neonatal neurological examination was carried out at 2 weeks. General movement quality was assessed at 2 and 12 weeks. Neither DHA alone nor DHA+AA influenced outcomes in the traditional examination. General movement quality of infants in the DHA group was lower than that of infants in the other two groups, especially at 12 weeks: 61% of the infants in the DHA group showed mildly abnormal general movements compared with 31% in the control group (P=0008) and 34% in the DHA+AA group (P=0015). We conclude that general movement quality at 12 weeks is sensitive to the maternal dietary DHA/AA balance. © 2009 The Authors.

Primary study

Unclassified

期刊 Prostaglandins, leukotrienes, and essential fatty acids
Year 2010
Loading references information
We showed that docosahexaenoic acid (DHA) supplementation during pregnancy and lactation was associated with more mildly abnormal (MA) general movements (GMs) in the infants. Since this finding was unexpected and inter-individual DHA intakes are highly variable, we explored the relationship between GM quality and erythrocyte DHA, arachidonic acid (AA), DHA/AA and Mead acid in 57 infants of this trial. MA GMs were inversely related to AA, associated with Mead acid, and associated with DHA/AA in a U-shaped manner. These relationships may indicate dependence of newborn AA status on synthesis from linoleic acid. This becomes restricted during the intrauterine period by abundant de novo synthesis of oleic and Mead acids from glucose, consistent with reduced insulin sensitivity during the third trimester. The descending part of the U-shaped relation between MA GMs and DHA/AA probably indicates DHA shortage next to AA shortage. The ascending part may reflect a different developmental trajectory that is not necessarily unfavorable. © 2009 Elsevier Ltd. All rights reserved.

Primary study

Unclassified

期刊 The Journal of pediatrics
Year 2010
Loading references information
Objective: We previously reported better psychomotor development at 30 months of age in infants whose mothers received a docosahexaenoic acid (DHA) (22:6n-3) supplement for the first 4 months of lactation. We now assess neuropsychological and visual function of the same children at 5 years of age. Study design: Breastfeeding women were assigned to receive identical capsules containing either a high-DHA algal oil (∼200 mg/d of DHA) or a vegetable oil (containing no DHA) from delivery until 4 months postpartum. Primary outcome variables at 5 years of age were measures of gross and fine motor function, perceptual/visual-motor function, attention, executive function, verbal skills, and visual function of the recipient children at 5 years of age. Results: There were no differences in visual function as assessed by the Bailey-Lovie acuity chart, transient visual evoked potential or sweep visual evoked potential testing between children whose mothers received DHA versus placebo. Children whose mothers received DHA versus placebo performed significantly better on the Sustained Attention Subscale of the Leiter International Performance Scale (46.5 ± 8.9 vs 41.9 ± 9.3, P < .008) but there were no statistically significant differences between groups on other neuropsychological domains. Conclusions: Five-year-old children whose mothers received modest DHA supplementation versus placebo for the first 4 months of breastfeeding performed better on a test of sustained attention. This, along with the previously reported better performance of the children of DHA-supplemented mothers on a test of psychomotor development at 30 months of age, suggests that DHA intake during early infancy confers long-term benefits on specific aspects of neurodevelopment. © 2010 Mosby Inc. All rights reserved.

Primary study

Unclassified

期刊 Progress in neuro-psychopharmacology & biological psychiatry
Year 2009
Loading references information
Background: The decrease of maternal docosahexaenoic (DHA) status during pregnancy has been associated with postpartum depression, especially in women with a low intake of DHA. Since the DHA intake in the Netherlands is low, we investigated whether supplementation of low doses of DHA or DHA plus arachidonic acid (AA) during pregnancy and lactation could prevent depressive symptoms and sleep disturbances in this period. Methods: Women were supplemented daily with placebo, DHA (220 mg) or DHA + AA (220 mg each) from week 16 of pregnancy till three months postpartum. Fatty acid analyses were performed in the available plasma samples at 16 and 36 weeks of pregnancy. Depressive symptoms were measured in weeks 16 and 36 of pregnancy and six weeks postpartum using EPDS and within one week postpartum using a blues questionnaire. Results: 119 women completed the study. The average frequency of fish intake was low, 0.94 times per week, and did not differ between the groups. The supplementation groups did not differ in mean EPDS scores or changes in EPDS scores, nor in incidence or severity of postpartum blues. Red blood cell DHA, AA and DHA/AA ratio did not correlate with EPDS or blues scores. Indices of sleep quality did not differ between the groups. Conclusion: Supplementation of 220 mg/day DHA or DHA + AA (220 mg/day each) does not prevent peri-partum depressive symptoms, in a population based sample with low background DHA intake. Trial registration: ISRCTN Register nr. ISRCTN58176213. © 2008 Elsevier Inc. All rights reserved.