In the present study, we investigated whether n-6 and n-3 long-chain PUFA (LC-PUFA) concentrations in cord blood (CB) serum are associated with BMI up to 10 years of age, after accounting for LC-PUFA composition at 2, 6 and 10 years. The study was based on 388 participants of the German LISAplus (Influence of Lifestyle-Related Factors on the Immune System and the Development of Allergies in Childhood Plus the Influence of Traffic Emissions and Genetics) birth cohort study carried out in Munich. BMI was measured at 2, 6 and 10 years of age. Serum phospholipid fatty acid concentrations were measured by GC in CB and in blood collected at 2, 6 and 10 years of age. The association between n-3 LC-PUFA and n-6 LC-PUFA concentrations and n-6:n-3 LC-PUFA ratio in CB serum glycerophospholipids and BMI z-scores was assessed using linear mixed models adjusted for LC-PUFA composition at follow-up and potential confounders. Interaction terms between time of follow-up and LC-PUFA concentrations in CB were included. There was no consistent association between n-6 and n-3 LC-PUFA concentrations in CB and BMI over time. However, there was a significant interaction between n-6:n-3 LC-PUFA ratio in CB and time of follow-up with respect to BMI (P= 0·0415): a negative effect at 2 years; no effect at 6 years; a positive effect at 10 years. BMI up to 10 years of age may be influenced by the n-6:n-3 ratio in CB serum glycerophospholipids in a time-varying fashion. The present results thereby highlight the importance of considering age when examining associations between fatty acid concentrations and BMI.
BACKGROUND: Arachidonic acid (AA; C20∶4 n-6) and docosahexaenoic acid (DHA; C22∶6 n-3) are important long-chain polyunsaturated fatty acids (LC-PUFA) in maintaining pancreatic beta-cell structure and function. Newborns of gestational diabetic mothers are more susceptible to the development of type 2 diabetes in adulthood. It is not known whether low circulating AA or DHA is involved in perinatally "programming" this susceptibility. This study aimed to assess whether circulating concentrations of AA, DHA and other fatty acids are associated with fetal insulin sensitivity or beta-cell function, and whether low circulating concentrations of AA or DHA are involved in compromised fetal insulin sensitivity in gestational diabetic pregnancies. METHODS AND PRINCIPAL FINDINGS: In a prospective singleton pregnancy cohort, maternal (32-35 weeks gestation) and cord plasma fatty acids were assessed in relation to surrogate indicators of fetal insulin sensitivity (cord plasma glucose-to-insulin ratio, proinsulin concentration) and beta-cell function (proinsulin-to-insulin ratio) in 108 mother-newborn pairs. Cord plasma DHA levels (in percentage of total fatty acids) were lower comparing newborns of gestational diabetic (n = 24) vs. non-diabetic pregnancies (2.9% vs. 3.5%, P = 0.01). Adjusting for gestational age at blood sampling, lower cord plasma DHA levels were associated with lower fetal insulin sensitivity (lower glucose-to-insulin ratio, r = 0.20, P = 0.036; higher proinsulin concentration, r = -0.37, P <0.0001). The associations remained after adjustment for maternal and newborn characteristics. Cord plasma saturated fatty acids C18∶0 and C20∶0 were negatively correlated with fetal insulin sensitivity, but their levels were not different between gestational diabetic and non-diabetic pregnancies. Cord plasma AA levels were not correlated with fetal insulin sensitivity. CONCLUSION: Low circulating DHA levels are associated with compromised fetal insulin sensitivity, and may be involved in perinatally "programming" the susceptibility to type 2 diabetes in the offspring of gestational diabetic mothers.
Prenatal polyunsaturated fatty acid (PUFA) concentrations may be involved in the prenatal programming of adiposity. In this study we therefore explored the association between maternal PUFA concentrations, measured up to four times during pregnancy, and offspring adiposity at age 7 in 234 mother-child pairs of the Maastricht Essential Fatty Acid Birth cohort. Only dihomo-gamma-linolenic acid (DGLA, an n-6 fatty acid) concentration was associated with adiposity: per standard deviation increase in relative DGLA concentration, BMI increased by 0.44kg/m(2) (CI95: 0.16, 0.72), sum of skinfolds increased by 3.41mm (CI95: 1.88, 4.95), waist circumference increased by 1.09cm (CI95: 0.40, 1.78), and plasma leptin concentration increased by 0.66µg/l (CI95: 0.20, 1.11). In conclusion, maternal DGLA throughout gestation was associated with increased BMI and some additional measures of adiposity at age 7. This suggests that maternal DGLA might play a role in or reflect the prenatal programming of adiposity.
The intake of marine n-3 PUFA has been shown to decrease the risk of CVD in a number of studies. Since the development of CVD is often a lifelong process, marine n-3 PUFA intake early in life may also affect the development of later CVD. The aim of the present study was to investigate the association between maternal intake of marine n-3 PUFA during the second trimester of pregnancy and factors associated with cardiometabolic risk in the 20-year-old offspring. The study was based on the follow-up of the offspring of a Danish pregnancy cohort who participated in a study conducted from 1988 to 1989. A total of 965 pregnant women were originally included in the cohort and detailed information about the intake of marine n-3 PUFA during the second trimester was collected. In 2008-9, the offspring were invited to participate in a clinical examination including anthropometric, blood pressure (BP) and short-term heart rate variability measurements. Also, a fasting venous blood sample was drawn from them. Multiple linear regression modelling, using the lowest quintile of marine n-3 PUFA intake as the reference, was used to estimate the association with all outcomes. A total of 443 offspring participated in the clinical examination. No association between the intake of marine n-3 PUFA during the second trimester of pregnancy and offspring adiposity, glucose metabolism, BP or lipid profile was found. In conclusion, no association between the intake of marine n-3 PUFA during the second trimester of pregnancy and the factors associated with cardiometabolic risk in the 20-year-old offspring could be detected.
BACKGROUND/OBJECTIVE: Evidence is accumulating that the long-chain PUFA (LCPUFA) are associated with offspring growth and body composition. We investigated the relationship between LCPUFAs in red blood cells (RBCs) of pregnant women/breastfeeding mothers and umbilical cord RBCs of their neonates with infant growth and body composition ≤ 1 year of age.
SUBJECTS/METHODS: In an open-label randomized, controlled trial, 208 healthy pregnant women received a dietary intervention (daily supplementation with 1200 mg n-3 LCPUFAs and dietary counseling to reduce arachidonic acid (AA) intake) from the 15th week of gestation until 4 months of lactation or followed their habitual diet. Fatty acids of plasma phospholipids (PLs) and RBCs from maternal and cord blood were determined and associated with infant body weight, body mass index (BMI), lean body mass and fat mass assessed by skinfold thickness measurements and ultrasonography.
RESULTS: Dietary intervention significantly reduced the n-6/n-3 LCPUFA ratio in maternal and cord-blood plasma PLs and RBCs. Maternal RBCs docosahexaenoic acid (DHA), n-3 LCPUFAs and n-6 LCPUFAs at the 32nd week of gestation were positively related to birth weight. Maternal n-3 LCPUFAs, n-6 LCPUFAs and AA were positively associated with birth length. Maternal RBCs AA and n-6 LCPUFAs were significantly negatively related to BMI and Ponderal Index at 1 year postpartum, but not to fat mass.
CONCLUSION: Maternal DHA, AA, total n-3 LCPUFAs and n-6 LCPUFAs might serve as prenatal growth factors, while n-6 LCPUFAs also seems to regulate postnatal growth. The maternal n-6/n-3 LCPUFA ratio does not appear to have a role in adipose tissue development during early postnatal life.
BACKGROUND: There is some evidence that the n-6/n-3 long-chain polyunsaturated fatty acids (LCPUFAs) ratio in early nutrition, and thus in breast milk, could influence infant body composition.
METHODS: In an open-label randomized controlled trial (RCT), 208 healthy pregnant women were allocated to a dietary intervention (supplementation with 1,200 mg n-3 LCPUFAs per day and instructions to reduce arachidonic acid (AA) intake) from the 15th wk of gestation until 4 mo of lactation or to follow their habitual diet. Breast milk LCPUFAs at 6 wk and 4 mo postpartum were related to infant body composition assessed by skinfold thickness (SFT) measurements and ultrasonography during the first year of life.
RESULTS: Dietary intervention significantly reduced breast milk n-6/n-3 LCPUFAs ratio. In the whole sample, early breast milk docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and n-3 LCPUFAs at 6 wk postpartum were positively related to the sum of four SFT measurements at age 1. Breast milk AA and n-6 LCPUFAs at 6 wk postpartum were negatively associated with weight, BMI, and lean body mass (LBM) up to 4 mo postpartum.
CONCLUSION: Breast milk n-3 LCPUFAs appear to stimulate fat mass growth over the first year of life, whereas AA seems to be involved in the regulation of overall growth, especially in the early postpartum period.
OBJECTIVE: We studied differences in breast milk fatty acid (FA) composition between overweight and normal weight women and the effect of FA composition on children's cholesterol concentrations at 13 months and growth from birth to 13 months.
METHODS: Samples were collected from lactating women (n = 100) participating in STEPS study at infant's age of 3 months, and FA composition was analyzed with gas chromatography. Diet of mother was studied with Index of Diet Quality at third trimester of pregnancy and with food frequency questionnaire on sampling day. The children's weights and heights were collected from hospital records at birth and during study visits at 13 months.
RESULTS: Overweight women's breast milk compared to normal weight women's breast milk contained higher amount of saturated FAs (46.3 vs. 43.6 %, P = 0.012), lower amount of n-3FAs (2.2 vs. 2.7 %, P = 0.010), lower ratio of unsaturated to saturated FAs (1.1 vs. 1.3, P = 0.008), and higher ratio of n-6 to n-3 FAs (5.7 vs. 4.9, P = 0.031) than those of normal weight women even after adjusting for maternal diet (P < 0.05 for all). Normal weight women adhered more to dietary recommendations during pregnancy, whereas no differences were found in diet at sampling 3 months postpartum. The children's weight gains correlated with saturated FAs (R = 0.22, P = 0.04) and the ratio of unsaturated to saturated FAs (R = -0.23, P = 0.038) in milk; however, effects diminished after adjusting for total duration of breastfeeding. Milk FA composition was not associated with children's cholesterol concentrations at 13 months.
CONCLUSIONS: Breast milk FA composition differed between overweight and normal weight women.
BACKGROUND: Overweight has its origins largely in early life. We aimed to identify the most important parental, fetal, and infant risk factors of preschool overweight.
METHODS: In a prospective cohort study, among 3,610 Caucasian preschool children, we assessed the associations of 34 putative parental, fetal, and infant factors with overweight risk.
RESULTS: Higher maternal BMI, paternal BMI, and birth weight were associated with higher risk of preschool overweight (odds ratio (OR): 1.23, 95% confidence interval (CI): 1.10, 1.39; OR: 1.35, 95% CI: 1.19, 1.53; and OR: 2.71, 95% CI: 2.27, 3.25, respectively, per SD increase). The same model identified low household income (OR: 1.74, 95% CI: 1.24, 2.45), being female (OR: 1.55, 95% CI: 1.20, 2.01), and experiencing third-trimester accelerated growth (OR: 1.73, 95% CI: 1.24, 2.40) or postnatal accelerated growth (OR: 6.39, 95% CI: 4.54, 8.99) as risk factors for preschool overweight. Higher polyunsaturated fat intake at 14 mo was associated with a lower risk of preschool overweight (OR: 0.77, 95% CI: 0.62, 0.96 per SD).
CONCLUSION: Parental anthropometrics and household income, fetal and infant accelerated growth, and infant dietary fat intake are the major risk factors for the development of preschool overweight. Further studies need to explore whether these risk factors could be potential targets for preventive interventions.
BACKGROUND AND AIM: Early nutrition may programme blood lipid levels and thereby later cardiovascular health of children. The objective here was to evaluate the effects of maternal dietary counselling during pregnancy and breastfeeding on dietary intakes and blood lipid values in 1-4 year-old children. Further, the nutritional determinants of children's lipid profiles were assessed.
METHODS AND RESULTS: Mothers were randomised into dietary counselling or control groups at the first trimester of pregnancy. Their children were followed up clinically at 1, 2 and 4 years of age, by three-day food records and analyses of total cholesterol, HDL cholesterol and apolipoproteins A-I and B as well as lipoprotein (a). In general, the mean intake of saturated fatty acids as a proportion of total energy intake (E%) was higher than the recommended, while the mean intake of polyunsaturated fatty acids was low in children's diet. Over the first years, girls had higher concentration of non-HDL cholesterol than boys; 2.64 mmol/l (95% CI 2.54-2.74) vs. 2.49 (2.38-2.60); p = 0.038. Maternal dietary counselling was not reflected in the children's lipid values. Children's monounsaturated fatty acid intake (E%) correlated with apoA-I (p = 0.048) and, furthermore, there was a negative correlation between polyunsaturated fatty acid intake (E%) and apoB (p = 0.046).
CONCLUSION: Children's dietary fatty acid intake, but not maternal dietary counselling was shown to be related to blood apolipoproteins in children.
CONTEXT: Maternal diet during pregnancy has been linked to offspring adiposity, but it is unclear whether maternal polyunsaturated fatty acid (PUFA) status during pregnancy affects offspring body composition.
OBJECTIVE: We investigated the associations between maternal plasma n-3 and n-6 PUFA status at 34 wk gestation and offspring body composition.
DESIGN AND SETTING: A prospective United Kingdom population-based mother-offspring cohort, the Southampton Women's Survey (SWS), was studied.
PARTICIPANTS: A total of 12,583 nonpregnant women were recruited into the SWS, among whom 1987 delivered a baby before December 31, 2003; 293 mother-child pairs had complete measurements of maternal plasma PUFA concentrations in late pregnancy and offspring body composition at both ages 4 and 6 yr.
MAIN OUTCOMES MEASURED: We measured offspring body composition by dual-energy x-ray absorptiometry, yielding fat mass, lean mass, percentage fat mass, and percentage lean mass. Results are presented as β-coefficients for standardized variables, therefore reflecting the sd change of the outcome for every 1 sd of the predictor.
RESULTS: After adjustment for maternal factors and child factors including height and duration of breast-feeding, maternal plasma n-6 PUFA concentration positively predicted offspring fat mass at 4 yr (β = 0.14 SD/SD; P = 0.01) and 6 yr (β = 0.11 SD/SD; P = 0.04), but there was no association with offspring lean mass at either age (β = 0.005 SD/SD, P = 0.89; and β = 0.008 SD/SD, P = 0.81, respectively). Maternal plasma n-3 PUFA concentration was not associated with offspring fat mass at 4 yr (β = 0.057 SD/SD; P = 0.34) or 6 yr (β = 0.069 SD/SD; P = 0.21). Maternal plasma n-3 PUFA status was positively associated with offspring lean mass on univariate analysis (4 yr, β = 0.11, P = 0.06; 6 yr, β = 0.14; P = 0.02); however, this was confounded by a positive association with offspring height.
CONCLUSIONS: This observational study suggests that maternal n-6 PUFA status during pregnancy might influence offspring adiposity in childhood.
In the present study, we investigated whether n-6 and n-3 long-chain PUFA (LC-PUFA) concentrations in cord blood (CB) serum are associated with BMI up to 10 years of age, after accounting for LC-PUFA composition at 2, 6 and 10 years. The study was based on 388 participants of the German LISAplus (Influence of Lifestyle-Related Factors on the Immune System and the Development of Allergies in Childhood Plus the Influence of Traffic Emissions and Genetics) birth cohort study carried out in Munich. BMI was measured at 2, 6 and 10 years of age. Serum phospholipid fatty acid concentrations were measured by GC in CB and in blood collected at 2, 6 and 10 years of age. The association between n-3 LC-PUFA and n-6 LC-PUFA concentrations and n-6:n-3 LC-PUFA ratio in CB serum glycerophospholipids and BMI z-scores was assessed using linear mixed models adjusted for LC-PUFA composition at follow-up and potential confounders. Interaction terms between time of follow-up and LC-PUFA concentrations in CB were included. There was no consistent association between n-6 and n-3 LC-PUFA concentrations in CB and BMI over time. However, there was a significant interaction between n-6:n-3 LC-PUFA ratio in CB and time of follow-up with respect to BMI (P= 0·0415): a negative effect at 2 years; no effect at 6 years; a positive effect at 10 years. BMI up to 10 years of age may be influenced by the n-6:n-3 ratio in CB serum glycerophospholipids in a time-varying fashion. The present results thereby highlight the importance of considering age when examining associations between fatty acid concentrations and BMI.