Revisiones sistemáticas relacionados a este tópico

loading
28 Referencias (27 articles) Revertir Estudificar

Revisión sistemática

No clasificado

Revista International Journal of Preventive Medicine
Año 2022
Cargando información sobre las referencias
BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen responsible for an acute respiratory disease designated COIVD-19, which has spread throughout the world. Despite all the struggles with this virus, still, the majority of societies are affected by COVID-19, which raises many questions such as are these ways of management enough, which is crucial in order to contain the virus spread, and which is not effective. In this systemic review, we tried to summarize the data on different ways of managing COVID-19 outbreaks. Through understanding the efficacy and downsides of different approaches to manage COVID-19, public health officials, governing bodies, and health care administrators may be better equipped with the tools necessary to best manage COVID-19 and pandemics. METHODS: This systematic review was carried out by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol. Articles were selected using several databases PubMed, ScienceDirect, and Google Scholar, all peer-reviewed and published articles from December 1, 2019 to April 23, 2020 that met the inclusion criteria were selected. RESULTS: The majority of the included articles were mathematical modeling, cohort studies (n = 9), cross-sectional (n = 6), and one case series. Most articles originated from China and then Singapore. The measures that have been practiced in these articles consisted of close contact tracing and case isolation, quarantine, strict surveillance, lockdown, and travel surveillance. CONCLUSIONS: The most effective approach is at least the combination of case detection and isolation, and contact tracing or containment measures. In the literature, travel controls seem to be ineffective, personal hygiene should be tough and emphasized.

Revisión sistemática

No clasificado

Revista Environmental science and pollution research international
Año 2021
Cargando información sobre las referencias
In a post-pandemic scenario, indoor air monitoring may be required seeking to safeguard public health, and therefore well-defined methods, protocols, and equipment play an important role. Considering the COVID-19 pandemic, this manuscript presents a literature review on indoor air sampling methods to detect viruses, especially SARS-CoV-2. The review was conducted using the following online databases: Web of Science, Science Direct, and PubMed, and the Boolean operators "AND" and "OR" to combine the following keywords: air sampler, coronavirus, COVID-19, indoor, and SARS-CoV-2. This review included 25 published papers reporting sampling and detection methods for SARS-CoV-2 in indoor environments. Most of the papers focused on sampling and analysis of viruses in aerosols present in contaminated areas and potential transmission to adjacent areas. Negative results were found in 10 studies, while 15 papers showed positive results in at least one sample. Overall, papers report several sampling devices and methods for SARS-CoV-2 detection, using different approaches for distance, height from the floor, flow rates, and sampled air volumes. Regarding the efficacy of each mechanism as measured by the percentage of investigations with positive samples, the literature review indicates that solid impactors are more effective than liquid impactors, or filters, and the combination of various methods may be recommended. As a final remark, determining the sampling method is not a trivial task, as the samplers and the environment influence the presence and viability of viruses in the samples, and thus a case-by-case assessment is required for the selection of sampling systems.

Revisión sistemática

No clasificado

Revista Clinical infectious diseases : an official publication of the Infectious Diseases Society of America
Año 2021
Cargando información sobre las referencias
BACKGROUND: Understanding the drivers of SARS-CoV-2 transmission is crucial for control policies but evidence of transmission rates in different settings remains limited. METHODS: We conducted a systematic review to estimate secondary attack rates (SAR) and observed reproduction numbers (Robs) in different settings exploring differences by age, symptom status, and duration of exposure. To account for additional study heterogeneity, we employed a Beta-Binomial model to pool SARs across studies and a Negative-binomial model to estimate Robs. RESULTS: Households showed the highest transmission rates, with a pooled SAR of 21.1% (95%CI:17.4%-24.8%). SARs were significantly higher where the duration of household exposure exceeded 5 days compared with exposure of ≤5 days. SARs related to contacts at social events with family and friends were higher than those for low-risk casual contacts (5.9% vs. 1.2%). Estimates of SAR and Robs for asymptomatic index cases were approximately a seventh, and for pre-symptomatic two thirds of those for symptomatic index cases. We found some evidence for reduced transmission potential both from and to individuals under 20 years of age in the household context, which is more limited when examining all settings. CONCLUSIONS: Our results suggest that exposure in settings with familiar contacts increases SARS-CoV-2 transmission potential. Additionally, the differences observed in transmissibility by index case symptom status and duration of exposure have important implications for control strategies such as contact tracing, testing and rapid isolation of cases. There was limited data to explore transmission patterns in workplaces, schools, and care-homes, highlighting the need for further research in such settings.

Revisión sistemática

No clasificado

Revista Reviews in medical virology
Año 2021
Cargando información sobre las referencias
A key consideration in the Covid-19 pandemic is the dominant modes of transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. The objective of this review was to synthesise the evidence for the potential airborne transmission of SARS-CoV-2 via aerosols. Systematic literature searches were conducted in PubMed, Embase, Europe PMC and National Health Service UK evidence up to 27 July 2020. A protocol was published and Cochrane guidance for rapid review methodology was adhered to throughout. Twenty-eight studies were identified. Seven out of eight epidemiological studies suggest aerosol transmission may occur, with enclosed environments and poor ventilation noted as possible contextual factors. Ten of the 16 air sampling studies detected SARS-CoV-2 ribonucleic acid; however, only three of these studies attempted to culture the virus with one being successful in a limited number of samples. Two of four virological studies using artificially generated aerosols indicated that SARS-CoV-2 is viable in aerosols. The results of this review indicate there is inconclusive evidence regarding the viability and infectivity of SARS-CoV-2 in aerosols. Epidemiological studies suggest possible transmission, with contextual factors noted. Viral particles have been detected in air sampling studies with some evidence of clinical infectivity, and virological studies indicate these particles may represent live virus, adding further plausibility. However, there is uncertainty as to the nature and impact of aerosol transmission of SARS-CoV-2, and its relative contribution to the Covid-19 pandemic compared with other modes of transmission.

Revisión sistemática

No clasificado

Revista Environmental research
Año 2021
Cargando información sobre las referencias
At the end of December 2019, the rapid spread of the COVID-19 (SARS-CoV-2) disease and, subsequently, deaths around the world, lead to the declaration of the pandemic situation in the world. At the beginning of the epidemic, much attention is paid to person-to-person transmission, disinfection of virus-contaminated surfaces, and social distancing. However, there is much debate about the routes of disease transmission, including airborne transmission, so it is important to elucidate the exact route of transmission of the COVID-19 disease. To this end, the first systematic review study was conducted to comprehensively search all databases to collect studies on airborne transmission of SARS-CoV-2 in indoor air environments. In total, 14 relevant and eligible studies were included. Based on the findings, there is a great possibility of airborne transmission of SARS-CoV-2 in indoor air environments. Therefore, some procedures are presented such as improving ventilation, especially in hospitals and crowded places, and observing the interpersonal distance of more than 2 meters so that experts in indoor air quality consider them to improve the indoor air environments. Finally, in addition to the recommendations of the centers and official authorities such as hand washing and observing social distancing, the route of air transmission should also be considered to further protect health personnel, patients in hospitals, and the public in other Public Buildings.

Revisión sistemática

No clasificado

Revista The Science of the total environment
Año 2021
Cargando información sobre las referencias

Revisión sistemática

No clasificado

Revista F1000 Res.
Año 2021
Cargando información sobre las referencias

Revisión sistemática

No clasificado

Revista Environmental science & technology
Año 2021
Cargando información sobre las referencias
We conducted a systematic review of hygiene intervention effectiveness against SARS-CoV-2, including developing inclusion criteria, conducting the search, selecting articles for inclusion, and summarizing included articles. Overall, 96 268 articles were screened and 78 articles met inclusion criteria with outcomes in surface contamination, stability, and disinfection. Surface contamination was assessed on 3343 surfaces using presence/absence methods. Laboratories had the highest percent positive surfaces (21%, n = 83), followed by patient-room healthcare facility surfaces (17%, n = 1170), non-COVID-patient-room healthcare facility surfaces (12%, n = 1429), and household surfaces (3%, n = 161). Surface stability was assessed using infectivity, SARS-CoV-2 survived on stainless steel, plastic, and nitrile for half-life 2.3-17.9 h. Half-life decreased with temperature and humidity increases, and was unvaried by surface type. Ten surface disinfection tests with SARS-CoV-2, and 15 tests with surrogates, indicated sunlight, ultraviolet light, ethanol, hydrogen peroxide, and hypochlorite attain 99.9% reduction. Overall there was (1) an inability to align SARS-CoV-2 contaminated surfaces with survivability data and effective surface disinfection methods for these surfaces; (2) a knowledge gap on fomite contribution to SARS-COV-2 transmission; (3) a need for testing method standardization to ensure data comparability; and (4) a need for research on hygiene interventions besides surfaces, particularly handwashing, to continue developing recommendations for interrupting SARS-CoV-2 transmission.

Revisión sistemática

No clasificado

Revista Osong public health and research perspectives
Año 2021
Cargando información sobre las referencias

Revisión sistemática

No clasificado

Revista International Journal of Environmental Research and Public Health
Año 2021
Cargando información sobre las referencias
ABSTRACT: Workplaces can be high-risk environments for SARS-CoV-2 outbreaks and subsequent community transmission. Identifying, understanding, and implementing effective workplace SARS-CoV-2 infection prevention and control (IPC) measures is critical to protect workers, their families, and communities. A rapid review and meta-analysis were conducted to synthesize evidence assessing the effectiveness of COVID-19 IPC measures implemented in global workplace settings through April 2021. Medline, Embase, PubMed, and Cochrane Library were searched for studies that quantitatively assessed the effectiveness of workplace COVID-19 IPC measures. The included studies comprised varying empirical designs and occupational settings. Measures of interest included surveillance measures, outbreak investigations, environmental adjustments, personal protective equipment (PPE), changes in work arrangements, and worker education. Sixty-one studies from healthcare, nursing home, meatpacking, manufacturing, and office settings were included, accounting for ~280,000 employees based in Europe, Asia, and North America. Meta-analyses showed that combined IPC measures resulted in lower employee COVID-19 positivity rates (0.2% positivity; 95% CI 0-0.4%) than single measures such as asymptomatic PCR testing (1.7%; 95% CI 0.9-2.9%) and universal masking (24%; 95% CI 3.4-55.5%). Modelling studies showed that combinations of (i) timely and widespread contact tracing and case isolation, (ii) facilitating smaller worker cohorts, and (iii) effective use of PPE can reduce workplace transmission. Comprehensive COVID-19 IPC measures incorporating swift contact tracing and case isolation, PPE, and facility zoning can effectively prevent workplace outbreaks. Masking alone should not be considered sufficient protection from SARS-CoV-2 outbreaks in the workplace.