Revisiones sistemáticas relacionados a este tópico

loading
51 Referencias (50 articles) Revertir Estudificar

Revisión sistemática

No clasificado

Revista The Cochrane database of systematic reviews
Año 2023
Cargando información sobre las referencias
BACKGROUND: Chronic pain is common in adults, and often has a detrimental impact upon physical ability, well-being, and quality of life. Previous reviews have shown that certain antidepressants may be effective in reducing pain with some benefit in improving patients' global impression of change for certain chronic pain conditions. However, there has not been a network meta-analysis (NMA) examining all antidepressants across all chronic pain conditions. OBJECTIVES: To assess the comparative efficacy and safety of antidepressants for adults with chronic pain (except headache). SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, CINAHL, LILACS, AMED and PsycINFO databases, and clinical trials registries, for randomised controlled trials (RCTs) of antidepressants for chronic pain conditions in January 2022. SELECTION CRITERIA: We included RCTs that examined antidepressants for chronic pain against any comparator. If the comparator was placebo, another medication, another antidepressant, or the same antidepressant at different doses, then we required the study to be double-blind. We included RCTs with active comparators that were unable to be double-blinded (e.g. psychotherapy) but rated them as high risk of bias. We excluded RCTs where the follow-up was less than two weeks and those with fewer than 10 participants in each arm.  DATA COLLECTION AND ANALYSIS: Two review authors separately screened, data extracted, and judged risk of bias. We synthesised the data using Bayesian NMA and pairwise meta-analyses for each outcome and ranked the antidepressants in terms of their effectiveness using the surface under the cumulative ranking curve (SUCRA). We primarily used Confidence in Meta-Analysis (CINeMA) and Risk of Bias due to Missing Evidence in Network meta-analysis (ROB-MEN) to assess the certainty of the evidence. Where it was not possible to use CINeMA and ROB-MEN due to the complexity of the networks, we used GRADE to assess the certainty of the evidence. Our primary outcomes were substantial (50%) pain relief, pain intensity, mood, and adverse events. Our secondary outcomes were moderate pain relief (30%), physical function, sleep, quality of life, Patient Global Impression of Change (PGIC), serious adverse events, and withdrawal. MAIN RESULTS: This review and NMA included 176 studies with a total of 28,664 participants. The majority of studies were placebo-controlled (83), and parallel-armed (141). The most common pain conditions examined were fibromyalgia (59 studies); neuropathic pain (49 studies) and musculoskeletal pain (40 studies). The average length of RCTs was 10 weeks. Seven studies provided no useable data and were omitted from the NMA. The majority of studies measured short-term outcomes only and excluded people with low mood and other mental health conditions. Across efficacy outcomes, duloxetine was consistently the highest-ranked antidepressant with moderate- to high-certainty evidence. In duloxetine studies, standard dose was equally efficacious as high dose for the majority of outcomes. Milnacipran was often ranked as the next most efficacious antidepressant, although the certainty of evidence was lower than that of duloxetine. There was insufficient evidence to draw robust conclusions for the efficacy and safety of any other antidepressant for chronic pain.  Primary efficacy outcomes Duloxetine standard dose (60 mg) showed a small to moderate effect for substantial pain relief (odds ratio (OR) 1.91, 95% confidence interval (CI) 1.69 to 2.17; 16 studies, 4490 participants; moderate-certainty evidence) and continuous pain intensity (standardised mean difference (SMD) -0.31, 95% CI -0.39 to -0.24; 18 studies, 4959 participants; moderate-certainty evidence). For pain intensity, milnacipran standard dose (100 mg) also showed a small effect (SMD -0.22, 95% CI -0.39 to 0.06; 4 studies, 1866 participants; moderate-certainty evidence). Mirtazapine (30 mg) had a moderate effect on mood (SMD -0.5, 95% CI -0.78 to -0.22; 1 study, 406 participants; low-certainty evidence), while duloxetine showed a small effect (SMD -0.16, 95% CI -0.22 to -0.1; 26 studies, 7952 participants; moderate-certainty evidence); however it is important to note that most studies excluded participants with mental health conditions, and so average anxiety and depression scores tended to be in the 'normal' or 'subclinical' ranges at baseline already. Secondary efficacy outcomes Across all secondary efficacy outcomes (moderate pain relief, physical function, sleep, quality of life, and PGIC), duloxetine and milnacipran were the highest-ranked antidepressants with moderate-certainty evidence, although effects were small. For both duloxetine and milnacipran, standard doses were as efficacious as high doses. Safety There was very low-certainty evidence for all safety outcomes (adverse events, serious adverse events, and withdrawal) across all antidepressants. We cannot draw any reliable conclusions from the NMAs for these outcomes. AUTHORS' CONCLUSIONS: Our review and NMAs show that despite studies investigating 25 different antidepressants, the only antidepressant we are certain about for the treatment of chronic pain is duloxetine. Duloxetine was moderately efficacious across all outcomes at standard dose. There is also promising evidence for milnacipran, although further high-quality research is needed to be confident in these conclusions. Evidence for all other antidepressants was low certainty. As RCTs excluded people with low mood, we were unable to establish the effects of antidepressants for people with chronic pain and depression. There is currently no reliable evidence for the long-term efficacy of any antidepressant, and no reliable evidence for the safety of antidepressants for chronic pain at any time point.

Revisión sistemática

No clasificado

Revista The Cochrane database of systematic reviews
Año 2022
Cargando información sobre las referencias
BACKGROUND: Spasticity and chronic neuropathic pain are common and serious symptoms in people with multiple sclerosis (MS). These symptoms increase with disease progression and lead to worsening disability, impaired activities of daily living and quality of life. Anti-spasticity medications and analgesics are of limited benefit or poorly tolerated. Cannabinoids may reduce spasticity and pain in people with MS. Demand for symptomatic treatment with cannabinoids is high. A thorough understanding of the current body of evidence regarding benefits and harms of these drugs is required. OBJECTIVES: To assess benefit and harms of cannabinoids, including synthetic, or herbal and plant-derived cannabinoids, for reducing symptoms for adults with MS. SEARCH METHODS: We searched the following databases from inception to December 2021: MEDLINE, Embase, the Cochrane Central Register of Controlled Trials (CENTRAL, the Cochrane Library), CINAHL (EBSCO host), LILACS, the Physiotherapy Evidence Database (PEDro), the World Health Organisation International Clinical Trials Registry Platform, the US National Institutes of Health clinical trial register, the European Union Clinical Trials Register, the International Association for Cannabinoid Medicines databank. We hand searched citation lists of included studies and relevant reviews. SELECTION CRITERIA: We included randomised parallel or cross-over trials (RCTs) evaluating any cannabinoid (including herbal Cannabis, Cannabis flowers, plant-based cannabinoids, or synthetic cannabinoids) irrespective of dose, route, frequency, or duration of use for adults with MS. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methodology. To assess bias in included studies, we used the Cochrane Risk of bias 2 tool for parallel RCTs and crossover trials. We rated the certainty of evidence using the GRADE approach for the following outcomes: reduction of 30% in the spasticity Numeric Rating Scale, pain relief of 50% or greater in the Numeric Rating Scale-Pain Intensity, much or very much improvement in the Patient Global Impression of Change (PGIC), Health-Related Quality of Life (HRQoL), withdrawals due to adverse events (AEs) (tolerability), serious adverse events (SAEs), nervous system disorders, psychiatric disorders, physical dependence. MAIN RESULTS: We included 25 RCTs with 3763 participants of whom 2290 received cannabinoids. Age ranged from 18 to 60 years, and between 50% and 88% participants across the studies were female.  The included studies were 3 to 48 weeks long and compared nabiximols, an oromucosal spray with a plant derived equal (1:1) combination of tetrahydrocannabinol (THC) and cannabidiol (CBD) (13 studies), synthetic cannabinoids mimicking THC (7 studies), an oral THC extract of Cannabis sativa (2 studies), inhaled herbal Cannabis (1 study) against placebo. One study compared dronabinol, THC extract of Cannabis sativa and placebo, one compared inhaled herbal Cannabis, dronabinol and placebo. We identified eight ongoing studies. Critical outcomes • Spasticity: nabiximols probably increases the number of people who report an important reduction of perceived severity of spasticity compared with placebo (odds ratio (OR) 2.51, 95% confidence interval (CI) 1.56 to 4.04; 5 RCTs, 1143 participants; I2 = 67%; moderate-certainty evidence). The absolute effect was 216 more people (95% CI 99 more to 332 more) per 1000 reporting benefit with cannabinoids than with placebo. • Chronic neuropathic pain: we found only one small trial that measured the number of participants reporting substantial pain relief with a synthetic cannabinoid compared with placebo (OR 4.23, 95% CI 1.11 to 16.17; 1 study, 48 participants; very low-certainty evidence). We are uncertain whether cannabinoids reduce chronic neuropathic pain intensity. • Treatment discontinuation due to AEs: cannabinoids may increase slightly the number of participants who discontinue treatment compared with placebo (OR 2.41, 95% CI 1.51 to 3.84; 21 studies, 3110 participants; I² = 17%; low-certainty evidence); the absolute effect is 39 more people (95% CI 15 more to 76 more) per 1000 people. Important outcomes • PGIC: cannabinoids probably increase the number of people who report 'very much' or 'much' improvement in health status compared with placebo (OR 1.80, 95% CI 1.37 to 2.36; 8 studies, 1215 participants; I² = 0%; moderate-certainty evidence). The absolute effect is 113 more people (95% CI 57 more to 175 more) per 1000 people reporting improvement. • HRQoL: cannabinoids may have little to no effect on HRQoL (SMD -0.08, 95% CI -0.17 to 0.02; 8 studies, 1942 participants; I2 = 0%; low-certainty evidence); • SAEs: cannabinoids may result in little to no difference in the number of participants who have SAEs compared with placebo (OR 1.38, 95% CI 0.96 to 1.99; 20 studies, 3124 participants; I² = 0%; low-certainty evidence); • AEs of the nervous system: cannabinoids may increase nervous system disorders compared with placebo (OR 2.61, 95% CI 1.53 to 4.44; 7 studies, 1154 participants; I² = 63%; low-certainty evidence); • Psychiatric disorders: cannabinoids may increase psychiatric disorders compared with placebo (OR 1.94, 95% CI 1.31 to 2.88; 6 studies, 1122 participants; I² = 0%; low-certainty evidence); • Drug tolerance: the evidence is very uncertain about the effect of cannabinoids on drug tolerance (OR 3.07, 95% CI 0.12 to 75.95; 2 studies, 458 participants; very low-certainty evidence). AUTHORS' CONCLUSIONS: Compared with placebo, nabiximols probably reduces the severity of spasticity in the short-term in people with MS. We are uncertain about the effect on chronic neurological pain and health-related quality of life. Cannabinoids may increase slightly treatment discontinuation due to AEs, nervous system and psychiatric disorders compared with placebo. We are uncertain about the effect on drug tolerance. The overall certainty of evidence is limited by short-term duration of the included studies.

Revisión sistemática

No clasificado

Revista Pain
Año 2021
Cargando información sobre las referencias
Cannabinoids, cannabis, and cannabis-based medicines (CBMs) are increasingly used to manage pain, with limited understanding of their efficacy and safety. We summarised efficacy and adverse events (AEs) of these types of drugs for treating pain using randomised controlled trials: in people of any age, with any type of pain, and for any treatment duration. Primary outcomes were 30% and 50% reduction in pain intensity, and AEs. We assessed risk of bias of included studies, and the overall quality of evidence using GRADE. Studies of < 7 and > 7 days treatment duration were analysed separately. We included 36 studies (7217 participants) delivering cannabinoids (8 studies), cannabis (6 studies), and CBM (22 studies); all had high and/or uncertain risk of bias. Evidence of benefit was found for cannabis < 7 days (risk difference 0.33, 95% confidence interval 0.20-0.46; 2 trials, 231 patients, very low-quality evidence) and nabiximols > 7 days (risk difference 0.06, 95% confidence interval 0.01-0.12; 6 trials, 1484 patients, very low-quality evidence). No other beneficial effects were found for other types of cannabinoids, cannabis, or CBM in our primary analyses; 81% of subgroup analyses were negative. Cannabis, nabiximols, and delta-9-tetrahydrocannabinol had more AEs than control. Studies in this field have unclear or high risk of bias, and outcomes had GRADE rating of low- or very low-quality evidence. We have little confidence in the estimates of effect. The evidence neither supports nor refutes claims of efficacy and safety for cannabinoids, cannabis, or CBM in the management of pain. (PsycInfo Database Record (c) 2025 APA, all rights reserved)

Revisión sistemática

No clasificado

Revista Clinical Medicine Insights: Arthritis & Musculoskeletal Disorders
Año 2020
Cargando información sobre las referencias
Background: For patients with chronic, non-cancer pain, traditional pain-relieving medications include opioids, which have shown benefits but are associated with increased risks of addiction and adverse effects. Medical cannabis has emerged as a treatment alternative for managing these patients and there has been a rise in the number of randomized clinical trials in recent years; therefore, a systematic review of the evidence was warranted. Objective: To analyze the evidence surrounding the benefits and harms of medical cannabinoids in the treatment of chronic, non-cancer-related pain. Design: Systematic review with meta-analysis. Data sources: Medline, Embase, CINAHL, SCOPUS, Google Scholar, and Cochrane Databases. Eligibility criteria: English language randomized clinical trials of cannabinoids for the treatment of chronic, non-cancer-related pain. Data extraction and synthesis: Study quality was assessed using the Cochrane risk of bias tool. All stages were conducted independently by a team of 6 reviewers. Data were pooled through meta-analysis with different durations of treatment (2 weeks, 2 months, 6 months) and stratified by route of administration (smoked, oromucosal, oral), conditions, and type of cannabinoids. Main outcomes and measures: Patient-reported pain and adverse events (AEs). Results: Thirty-six trials (4006 participants) were included, examining smoked cannabis (4 trials), oromucosal cannabis sprays (14 trials), and oral cannabinoids (18 trials). Compared with placebo, cannabinoids showed a significant reduction in pain which was greatest with treatment duration of 2 to 8 weeks (weighted mean difference on a 0-10 pain visual analogue scale −0.68, 95% confidence interval [CI], −0.96 to −0.40, I2 = 8%, P <.00001; n = 16 trials). When stratified by route of administration, pain condition, and type of cannabinoids, oral cannabinoids had a larger reduction in pain compared with placebo relative to oromucosal and smoked formulations but the difference was not significant (P[interaction] >.05 in all the 3 durations of treatment); cannabinoids had a smaller reduction in pain due to multiple sclerosis compared with placebo relative to other neuropathic pain (P[interaction] =.05) within 2 weeks and the difference was not significant relative to pain due to rheumatic arthritis; nabilone had a greater reduction in pain compared with placebo relative to other types of cannabinoids longer than 2 weeks of treatment but the difference was not significant (P[interaction] >.05). Serious AEs were rare, and similar across the cannabinoid (74 out of 2176, 3.4%) and placebo groups (53 out of 1640, 3.2%). There was an increased risk of non-serious AEs with cannabinoids compared with placebo. Conclusions: There was moderate evidence to support cannabinoids in treating chronic, non-cancer pain at 2 weeks. Similar results were observed at later time points, but the confidence in effect is low. There is little evidence that cannabinoids increase the risk of experiencing serious AEs, although non-serious AEs may be common in the short-term period following use.

Revisión sistemática

No clasificado

Autores Wong SSC , Chan WS , Cheung CW
Revista Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology
Año 2020
Cargando información sobre las referencias
There is growing interest in using cannabinoids for chronic pain. We performed a systematic review and meta-analysis of randomized controlled trials to evaluate the analgesic efficacy and adverse effects of cannabinoids for chronic non-cancer pain. PubMed, EMBASE, Web of Science, Cochrane CENTRAL and clinicaltrials.gov were searched up to December 2018. Information on the type, dosage, route of administration, pain conditions, pain scores, and adverse events were extracted for qualitative analysis. Meta-analysis of analgesic efficacy was performed. Meta-regression was performed to compare the analgesic efficacy for different pain conditions (neuropathic versus non-neuropathic pain). Risk of bias was assessed by The Cochrane Risk of Bias tool, and the strength of the evidence was assessed using the Grade of Recommendations Assessment, Development, and Evaluation (GRADE) approach. Forty-three randomized controlled trials were included. Meta-analysis was performed for 33 studies that compared cannabinoids to placebo, and showed a mean pain score (scale 0–10) reduction of −0.70 (p < 0.001, random effect). Meta-regression showed that analgesic efficacy was similar for neuropathic and non-neuropathic pain (Difference = −0.14, p = 0.262). Inhaled, oral, and oromucosal administration all provided statistically significant, but small reduction in mean pain score (−0.97, −0.85, −0.45, all p < 0.001). Incidence of serious adverse events was rare, and non-serious adverse events were usually mild to moderate. Heterogeneity was moderate. The GRADE level of evidence was low to moderate. Pain intensity of chronic non-cancer patients was reduced by cannabinoids consumption, but effect sizes were small. Efficacy for neuropathic and non-neuropathic pain was similar. © 2020, Springer Science+Business Media, LLC, part of Springer Nature.

Revisión sistemática

No clasificado

Autores [No se listan los autores]
Libro
Año 2020
Cargando información sobre las referencias
This is the first progress report for an ongoing living systematic review on plant-based treatments for chronic pain. The systematic review will synthesize evidence on the benefits and harms of plant-based compounds (PBCs) such as cannabinoids and kratom used to treat chronic pain, addressing concerns about severe adverse effects, abuse, misuse, dependence, and addiction. The purpose of this progress report is to describe the body of literature identified thus far. This report will be periodically updated with new studies as they are published and identified, culminating in a systematic review that provides a synthesis of the accumulated evidence.

Revisión sistemática

No clasificado

Revista The lancet. Psychiatry
Año 2019
Cargando información sobre las referencias
Background: Medicinal cannabinoids, including medicinal cannabis and pharmaceutical cannabinoids and their synthetic derivatives, such as tetrahydrocannabinol (THC) and cannabidiol (CBD), have been suggested to have a therapeutic role in certain mental disorders. We analysed the available evidence to ascertain the effectiveness and safety of all types of medicinal cannabinoids in treating symptoms of various mental disorders. Methods: For this systematic review and meta-analysis we searched MEDLINE, Embase, PsycINFO, the Cochrane Central Register of Controlled Clinical Trials, and the Cochrane Database of Systematic Reviews for studies published between Jan 1, 1980, and April 30, 2018. We also searched for unpublished or ongoing studies on ClinicalTrials.gov, the EU Clinical Trials Register, and the Australian and New Zealand Clinical Trials Registry. We considered all studies examining any type and formulation of a medicinal cannabinoid in adults (≥18 years) for treating depression, anxiety, attention-deficit hyperactivity disorder (ADHD), Tourette syndrome, post-traumatic stress disorder, or psychosis, either as the primary condition or secondary to other medical conditions. We placed no restrictions on language, publication status, or study type (ie, both experimental and observational study designs were included). Primary outcomes were remission from and changes in symptoms of these mental disorders. The safety of medicinal cannabinoids for these mental disorders was also examined. Evidence from randomised controlled trials was synthesised as odds ratios (ORs) for disorder remission, adverse events, and withdrawals and as standardised mean differences (SMDs) for change in symptoms, via random-effects meta-analyses. The quality of the evidence was assessed with the Cochrane risk of bias tool and Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach. This study is registered with PROSPERO (CRD42017059372, CRD42017059373, CRD42017059376, CRD42017064996, and CRD42018102977). Findings: 83 eligible studies (40 randomised controlled trials, n=3067) were included: 42 for depression (23 randomised controlled trials; n=2551), 31 for anxiety (17 randomised controlled trials; n=605), eight for Tourette syndrome (two randomised controlled trials; n=36), three for ADHD (one randomised controlled trial; n=30), 12 for post-traumatic stress disorder (one randomised controlled trial; n=10), and 11 for psychosis (six randomised controlled trials; n=281). Pharmaceutical THC (with or without CBD) improved anxiety symptoms among individuals with other medical conditions (primarily chronic non-cancer pain and multiple sclerosis; SMD −0·25 [95% CI −0·49 to −0·01]; seven studies; n=252), although the evidence GRADE was very low. Pharmaceutical THC (with or without CBD) worsened negative symptoms of psychosis in a single study (SMD 0·36 [95% CI 0·10 to 0·62]; n=24). Pharmaceutical THC (with or without CBD) did not significantly affect any other primary outcomes for the mental disorders examined but did increase the number of people who had adverse events (OR 1·99 [95% CI 1·20 to 3·29]; ten studies; n=1495) and withdrawals due to adverse events (2·78 [1·59 to 4·86]; 11 studies; n=1621) compared with placebo across all mental disorders examined. Few randomised controlled trials examined the role of pharmaceutical CBD or medicinal cannabis. Interpretation: There is scarce evidence to suggest that cannabinoids improve depressive disorders and symptoms, anxiety disorders, attention-deficit hyperactivity disorder, Tourette syndrome, post-traumatic stress disorder, or psychosis. There is very low quality evidence that pharmaceutical THC (with or without CBD) leads to a small improvement in symptoms of anxiety among individuals with other medical conditions. There remains insufficient evidence to provide guidance on the use of cannabinoids for treating mental disorders within a regulatory framework. Further high-quality studies directly examining the effect of cannabinoids on treating mental disorders are needed. Funding: Therapeutic Goods Administration, Australia; Commonwealth Department of Health, Australia; Australian National Health and Medical Research Council; and US National Institutes of Health. © 2019 Elsevier Ltd

Revisión sistemática

No clasificado

Revista Canadian journal of surgery. Journal canadien de chirurgie
Año 2019
Cargando información sobre las referencias
BACKGROUND: Medical cannabis use is an emerging topic of interest in orthopedics. Although there is a large amount of literature on medical cannabis use for managing various types of pain, few studies have focused on orthopedic conditions. There is little high-quality evidence in core orthopedic areas. The objective of this study was to summarize the literature on the efficacy of cannabis use for pain related to orthopedic conditions. METHODS: We conducted a systematic review of the literature on the use of cannabinoids for pain management in core orthopedic conditions. Two independent reviewers extracted information on reporting quality, risk of bias, drugs, population, control, duration of study, pain outcomes and the authors’ conclusions regarding efficacy for pain outcomes. RESULTS: We identified 33 orthopedic studies, including 21 primary studies and 12 reviews. Study quality was generally low to moderate. Six of the included studies had a control group and 15 were noncontrolled studies. Methodologies, drugs and protocols of administration varied greatly across studies. Study conclusions were generally positive in noncontrolled studies and mixed in controlled studies. Studies using higher doses tended to conclude that cannabis use was effective, but the potential for harmful effects may also be increased with higher doses. CONCLUSION: Variability in the methodologies used in cannabis research makes it challenging to draw conclusions about dosing, routes and frequency of administration. Most of the existing evidence suggests that medical cannabis use is effective, but this efficacy has been demonstrated only when either there is no comparator or cannabis is compared with placebo. Studies using an active comparator have not demonstrated efficacy. Future research should focus on improving study reporting and methodologic quality so that protocols that optimize pain control while minimizing harmful effects can be determined.

Revisión sistemática

No clasificado

Revista Experimental and clinical psychopharmacology
Año 2019
Cargando información sobre las referencias
Cannabis and its pharmacologically active constituents, phytocannabinoids, have long been reported to have multiple medicinal benefits. One association often reported by users is sedation and subjective improvements in sleep. To further examine this association, we conducted a critical review of clinical studies examining the effects of cannabinoids on subjective and objective measures of sleep. PubMED, Web of Science, and Google Scholar were searched using terms and synonyms related to cannabinoids and sleep. Articles chosen included randomized controlled trials and open label studies. The Cochrane risk of bias tool was used to assess the quality of trials that compared cannabinoids with control interventions. The current literature focuses mostly on the use of tetrahydrocannabinol (THC) and/or cannabidiol (CBD) in the treatment of chronic health conditions such as multiple sclerosis, posttraumatic stress disorder (PTSD), and chronic pain. Sleep is often a secondary, rather than primary outcome in these studies. Many of the reviewed studies suggested that cannabinoids could improve sleep quality, decrease sleep disturbances, and decrease sleep onset latency. While many of the studies did show a positive effect on sleep, there are many limiting factors such as small sample sizes, examining sleep as a secondary outcome in the context of another illness, and relatively few studies using validated subjective or objective measurements. This review also identified several questions that should be addressed in future research. These questions include further elucidation of the dichotomy between the effects of THC and CBD, as well as identifying any long-term adverse effects of medicinal cannabinoid use. (PsycInfo Database Record (c) 2021 APA, all rights reserved)

Revisión sistemática

No clasificado

Revista Experimental and clinical psychopharmacology
Año 2019
Cargando información sobre las referencias
Chronic pain states have resulted in an overreliance on opioid pain relievers, which can carry significant risks when used long term. As such, alternative pain treatments are increasingly desired. Although emerging research suggests that cannabinoids have therapeutic potential regarding pain, results from studies across pain populations have been inconsistent. To provide meta-analytic clarification regarding cannabis’s impact on subjective pain, we identified studies that assessed drug-induced pain modulations under cannabinoid and corresponding placebo conditions. A literature search yielded 25 peer-reviewed records that underwent data extraction. Baseline and end-point data were used to compute standardized effect size estimates (Cohen’s d) across cannabinoid administrations (k = 39) and placebo administrations (k = 26). Standardized effects were inverse-variance weighted and pooled across studies for meta-analytic comparison. Results revealed that cannabinoid administration produced a medium-to-large effect across included studies, Cohen’s d = −0.58, 95% confidence interval (CI) [−0.74, −0.43], while placebo administration produced a small-to-medium effect, Cohen’s d = −0.39, 95% CI [−0.52, −0.26]. Meta-regression revealed that cannabinoids, β = −0.43, 95% CI [−0.62, −0.24], p &lt; .05, synthetic cannabinoids, β = −0.39, 95% CI [−0.65, −0.14], p &lt; .05, and sample size, β = 0.01, 95% CI [0.00, 0.01], p &lt; .05, were associated with marked pain reduction. These outcomes suggest that cannabinoid-based pharmacotherapies may serve as effective replacement/adjunctive options regarding pain, however, additional research is warranted. Additionally, given demonstrated neurocognitive side effects associated with some constituent cannabinoids (i.e., THC), subsequent work may consider developing novel therapeutic agents that capitalize on cannabis’s analgesic properties without producing adverse effects. (PsycInfo Database Record (c) 2021 APA, all rights reserved)