BACKGROUND: Coronary heart disease (CHD) is the most common cause of death globally. However, with falling CHD mortality rates, an increasing number of people living with CHD may need support to manage their symptoms and prognosis. Exercise-based cardiac rehabilitation (CR) aims to improve the health and outcomes of people with CHD. This is an update of a Cochrane Review previously published in 2016.
OBJECTIVES: To assess the clinical effectiveness and cost-effectiveness of exercise-based CR (exercise training alone or in combination with psychosocial or educational interventions) compared with 'no exercise' control, on mortality, morbidity and health-related quality of life (HRQoL) in people with CHD.
SEARCH METHODS: We updated searches from the previous Cochrane Review, by searching CENTRAL, MEDLINE, Embase, and two other databases in September 2020. We also searched two clinical trials registers in June 2021.
SELECTION CRITERIA: We included randomised controlled trials (RCTs) of exercise-based interventions with at least six months' follow-up, compared with 'no exercise' control. The study population comprised adult men and women who have had a myocardial infarction (MI), coronary artery bypass graft (CABG) or percutaneous coronary intervention (PCI), or have angina pectoris, or coronary artery disease.
DATA COLLECTION AND ANALYSIS: We screened all identified references, extracted data and assessed risk of bias according to Cochrane methods. We stratified meta-analysis by duration of follow-up: short-term (6 to 12 months); medium-term (> 12 to 36 months); and long-term ( > 3 years), and used meta-regression to explore potential treatment effect modifiers. We used GRADE for primary outcomes at 6 to 12 months (the most common follow-up time point). MAIN RESULTS: This review included 85 trials which randomised 23,430 people with CHD. This latest update identified 22 new trials (7795 participants). The population included predominantly post-MI and post-revascularisation patients, with a mean age ranging from 47 to 77 years. In the last decade, the median percentage of women with CHD has increased from 11% to 17%, but females still account for a similarly small percentage of participants recruited overall ( < 15%). Twenty-one of the included trials were performed in low- and middle-income countries (LMICs). Overall trial reporting was poor, although there was evidence of an improvement in quality over the last decade. The median longest follow-up time was 12 months (range 6 months to 19 years). At short-term follow-up (6 to 12 months), exercise-based CR likely results in a slight reduction in all-cause mortality (risk ratio (RR) 0.87, 95% confidence interval (CI) 0.73 to 1.04; 25 trials; moderate certainty evidence), a large reduction in MI (RR 0.72, 95% CI 0.55 to 0.93; 22 trials; number needed to treat for an additional beneficial outcome (NNTB) 75, 95% CI 47 to 298; high certainty evidence), and a large reduction in all-cause hospitalisation (RR 0.58, 95% CI 0.43 to 0.77; 14 trials; NNTB 12, 95% CI 9 to 21; moderate certainty evidence). Exercise-based CR likely results in little to no difference in risk of cardiovascular mortality (RR 0.88, 95% CI 0.68 to 1.14; 15 trials; moderate certainty evidence), CABG (RR 0.99, 95% CI 0.78 to 1.27; 20 trials; high certainty evidence), and PCI (RR 0.86, 95% CI 0.63 to 1.19; 13 trials; moderate certainty evidence) up to 12 months' follow-up. We are uncertain about the effects of exercise-based CR on cardiovascular hospitalisation, with a wide confidence interval including considerable benefit as well as harm (RR 0.80, 95% CI 0.41 to 1.59; low certainty evidence). There was evidence of substantial heterogeneity across trials for cardiovascular hospitalisations (I2 = 53%), and of small study bias for all-cause hospitalisation, but not for all other outcomes. At medium-term follow-up, although there may be little to no difference in all-cause mortality (RR 0.90, 95% CI 0.80 to 1.02; 15 trials), MI (RR 1.07, 95% CI 0.91 to 1.27; 12 trials), PCI (RR 0.96, 95% CI 0.69 to 1.35; 6 trials), CABG (RR 0.97, 95% CI 0.77 to 1.23; 9 trials), and all-cause hospitalisation (RR 0.92, 95% CI 0.82 to 1.03; 9 trials), a large reduction in cardiovascular mortality was found (RR 0.77, 95% CI 0.63 to 0.93; 5 trials). Evidence is uncertain for difference in risk of cardiovascular hospitalisation (RR 0.92, 95% CI 0.76 to 1.12; 3 trials). At long-term follow-up, although there may be little to no difference in all-cause mortality (RR 0.91, 95% CI 0.75 to 1.10), exercise-based CR may result in a large reduction in cardiovascular mortality (RR 0.58, 95% CI 0.43 to 0.78; 8 trials) and MI (RR 0.67, 95% CI 0.50 to 0.90; 10 trials). Evidence is uncertain for CABG (RR 0.66, 95% CI 0.34 to 1.27; 4 trials), and PCI (RR 0.76, 95% CI 0.48 to 1.20; 3 trials). Meta-regression showed benefits in outcomes were independent of CHD case mix, type of CR, exercise dose, follow-up length, publication year, CR setting, study location, sample size or risk of bias. There was evidence that exercise-based CR may slightly increase HRQoL across several subscales (SF-36 mental component, physical functioning, physical performance, general health, vitality, social functioning and mental health scores) up to 12 months' follow-up; however, these may not be clinically important differences. The eight trial-based economic evaluation studies showed exercise-based CR to be a potentially cost-effective use of resources in terms of gain in quality-adjusted life years (QALYs).
AUTHORS' CONCLUSIONS: This updated Cochrane Review supports the conclusions of the previous version, that exercise-based CR provides important benefits to people with CHD, including reduced risk of MI, a likely small reduction in all-cause mortality, and a large reduction in all-cause hospitalisation, along with associated healthcare costs, and improved HRQoL up to 12 months' follow-up. Over longer-term follow-up, benefits may include reductions in cardiovascular mortality and MI. In the last decade, trials were more likely to include females, and be undertaken in LMICs, increasing the generalisability of findings. Well-designed, adequately-reported RCTs of CR in people with CHD more representative of usual clinical practice are still needed. Trials should explicitly report clinical outcomes, including mortality and hospital admissions, and include validated HRQoL outcome measures, especially over longer-term follow-up, and assess costs and cost-effectiveness.
BACKGROUND: Approximately 50% of cardiovascular disease (CVD) cases are attributable to lifestyle risk factors. Despite widespread education, personal knowledge, and efficacy, many individuals fail to adequately modify these risk factors, even after a cardiovascular event. Digital technology interventions have been suggested as a viable equivalent and potential alternative to conventional cardiac rehabilitation care centers. However, little is known about the clinical effectiveness of these technologies in bringing about behavioral changes in patients with CVD at an individual level.
OBJECTIVE: The aim of this study is to identify and measure the effectiveness of digital technology (eg, mobile phones, the internet, software applications, wearables, etc) interventions in randomized controlled trials (RCTs) and determine which behavior change constructs are effective at achieving risk factor modification in patients with CVD.
METHODS: This study is a systematic review and meta-analysis of RCTs designed according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analysis) statement standard. Mixed data from studies extracted from selected research databases and filtered for RCTs only were analyzed using quantitative methods. Outcome hypothesis testing was set at 95% CI and P=.05 for statistical significance.
RESULTS: Digital interventions were delivered using devices such as cell phones, smartphones, personal computers, and wearables coupled with technologies such as the internet, SMS, software applications, and mobile sensors. Behavioral change constructs such as cognition, follow-up, goal setting, record keeping, perceived benefit, persuasion, socialization, personalization, rewards and incentives, support, and self-management were used. The meta-analyzed effect estimates (mean difference [MD]; standard mean difference [SMD]; and risk ratio [RR]) calculated for outcomes showed benefits in total cholesterol SMD at -0.29 [-0.44, -0.15], P<.001; high-density lipoprotein SMD at -0.09 [-0.19, 0.00], P=.05; low-density lipoprotein SMD at -0.18 [-0.33, -0.04], P=.01; physical activity (PA) SMD at 0.23 [0.11, 0.36], P<.001; physical inactivity (sedentary) RR at 0.54 [0.39, 0.75], P<.001; and diet (food intake) RR at 0.79 [0.66, 0.94], P=.007. Initial effect estimates showed no significant benefit in body mass index (BMI) MD at -0.37 [-1.20, 0.46], P=.38; diastolic blood pressure (BP) SMD at -0.06 [-0.20, 0.08], P=.43; systolic BP SMD at -0.03 [-0.18, 0.13], P=.74; Hemoglobin A1C blood sugar (HbA1c) RR at 1.04 [0.40, 2.70], P=.94; alcohol intake SMD at -0.16 [-1.43, 1.10], P=.80; smoking RR at 0.87 [0.67, 1.13], P=.30; and medication adherence RR at 1.10 [1.00, 1.22], P=.06.
CONCLUSIONS: Digital interventions may improve healthy behavioral factors (PA, healthy diet, and medication adherence) and are even more potent when used to treat multiple behavioral outcomes (eg, medication adherence plus). However, they did not appear to reduce unhealthy behavioral factors (smoking, alcohol intake, and unhealthy diet) and clinical outcomes (BMI, triglycerides, diastolic and systolic BP, and HbA1c).
OBJECTIVES: To determine the contemporary effectiveness of exercise-based cardiac rehabilitation (CR) in terms of all-cause mortality, cardiovascular mortality and hospital admissions.
DATA SOURCES: Studies included in or meeting the entry criteria for the 2016 Cochrane review of exercise-based CR in patients with coronary artery disease.
STUDY ELIGIBILITY CRITERIA: Randomised controlled trials (RCTs) of exercise-based CR versus a no-exercise control whose participants were recruited after the year 2000.
STUDY APPRAISAL AND SYNTHESIS METHODS: Two separate reviewers independently screened the characteristics of studies. One reviewer quality appraised any new studies and assessed their risk of bias using the Cochrane Collaboration's recommended risk of bias tool. Data were reported as the risk difference (95% CI).
RESULTS: We included 22 studies with 4834 participants (mean age 59.5 years, 78.4% male). We found no differences in outcomes between exercise-based CR and a no-exercise control at their longest follow-up period for: all-cause mortality (19 studies; n=4194; risk difference 0.00, 95% CI -0.02 to 0.01, P=0.38) or cardiovascular mortality (9 studies; n=1182; risk difference -0.01, 95% CI -0.02 to 0.01, P=0.25). We found a small reduction in hospital admissions of borderline statistical significance (11 studies; n=1768; risk difference -0.05, 95% CI -0.10 to -0.00, P=0.05).
CONCLUSIONS AND IMPLICATIONS OF KEY FINDINGS: Our analysis indicates conclusively that the current approach to exercise-based CR has no effect on all-cause mortality or cardiovascular mortality, when compared with a no-exercise control. There may be a small reduction in hospital admissions following exercise-based CR that is unlikely to be clinically important.
PROSPERO REGISTRATION NUMBER: CRD42017073616.
BACKGROUND: Mobile technology gives researchers unimagined opportunities to design new interventions to increase physical activity. Unfortunately, it is still unclear which elements are useful to initiate and maintain behavior change.
OBJECTIVE: In this meta-analysis, we investigated randomized controlled trials of physical activity interventions that were delivered via mobile phone. We analyzed which elements contributed to intervention success.
METHODS: After searching four databases and science networks for eligible studies, we entered 50 studies with N=5997 participants into a random-effects meta-analysis, controlling for baseline group differences. We also calculated meta-regressions with the most frequently used behavior change techniques (behavioral goals, general information, self-monitoring, information on where and when, and instructions on how to) as moderators.
RESULTS: We found a small overall effect of the Hedges g=0.29, (95% CI 0.20 to 0.37) which reduced to g=0.22 after correcting for publication bias. In the moderator analyses, behavioral goals and self-monitoring each led to more intervention success. Interventions that used neither behavioral goals nor self-monitoring had a negligible effect of g=0.01, whereas utilizing either technique increased effectiveness by Δg=0.31, but combining them did not provide additional benefits (Δg=0.36).
CONCLUSIONS: Overall, mHealth interventions to increase physical activity have a small to moderate effect. However, including behavioral goals or self-monitoring can lead to greater intervention success. More research is needed to look at more behavior change techniques and their interactions. Reporting interventions in trial registrations and articles need to be structured and thorough to gain accurate insights. This can be achieved by basing the design or reporting of interventions on taxonomies of behavior change.
ANTECEDENTES: los dispositivos inalámbricos móviles (mHealth) se han utilizado para realizar intervenciones de auto-manejo de enfermedades cardiovasculares para educar y apoyar a los pacientes a hacer cambios de estilo de vida saludables. Esta revisión sistemática tuvo como objetivo determinar la efectividad de las intervenciones de salud móvil en los cambios de estilo de vida y de comportamiento adherencia a la medicación para el autocontrol de la enfermedad cardiovascular.
Métodos: Se realizó una búsqueda exhaustiva de la literatura se llevó a cabo desde el comienzo hasta el año 2015 al 3 de marzo en MEDLINE, PubMed, PsycINFO, EMBASE y The Cochrane Library. Los estudios elegibles utilizaron un diseño de ensayo experimental para determinar la efectividad de una intervención mHealth para cambiar los hábitos de vida en las poblaciones de las enfermedades cardiovasculares. Los datos extraídos incluyeron características de la intervención y el grupo de comparación con un enfoque específico en el uso de técnicas de cambio de comportamiento.
RESULTADOS: Siete estudios cumplieron los criterios de inclusión y fueron incluidos en la síntesis cualitativa. Todas las intervenciones se proporcionaron en parte por la mensajería de texto de teléfono móvil. Tres estudios fueron eficaces para mejorar la adherencia a la medicación y dos estudios que aumentó la actividad física. No se observaron efectos sobre el comportamiento de la dieta o dejar de fumar, medida en un estudio cada uno. intervenciones simples mensajes de texto parecían ser más eficaz; Sin embargo, no se encontraron relaciones claras entre los hallazgos del estudio y dosis de tratamiento, la duración o técnicas de cambio de comportamiento deseado.
Conclusiones: Nuestra revisión encontró salud móvil tiene el potencial de cambiar el comportamiento de estilo de vida. Los resultados son todavía limitados a un pequeño número de ensayos, medidas de resultados inconsistentes e informes ineficaz de características de la intervención. Gran escala, estudios longitudinales están garantizados para ganar una comprensión clara de los efectos de la salud móvil en el cambio de comportamiento en la población enfermedades cardiovasculares.
Coronary heart disease (CHD) is the most common cause of death globally. However, with falling CHD mortality rates, an increasing number of people living with CHD may need support to manage their symptoms and prognosis. Exercise-based cardiac rehabilitation (CR) aims to improve the health and outcomes of people with CHD. This is an update of a Cochrane Review previously published in 2016.
OBJECTIVES:
To assess the clinical effectiveness and cost-effectiveness of exercise-based CR (exercise training alone or in combination with psychosocial or educational interventions) compared with 'no exercise' control, on mortality, morbidity and health-related quality of life (HRQoL) in people with CHD.
SEARCH METHODS:
We updated searches from the previous Cochrane Review, by searching CENTRAL, MEDLINE, Embase, and two other databases in September 2020. We also searched two clinical trials registers in June 2021.
SELECTION CRITERIA:
We included randomised controlled trials (RCTs) of exercise-based interventions with at least six months' follow-up, compared with 'no exercise' control. The study population comprised adult men and women who have had a myocardial infarction (MI), coronary artery bypass graft (CABG) or percutaneous coronary intervention (PCI), or have angina pectoris, or coronary artery disease.
DATA COLLECTION AND ANALYSIS:
We screened all identified references, extracted data and assessed risk of bias according to Cochrane methods. We stratified meta-analysis by duration of follow-up: short-term (6 to 12 months); medium-term (> 12 to 36 months); and long-term ( > 3 years), and used meta-regression to explore potential treatment effect modifiers. We used GRADE for primary outcomes at 6 to 12 months (the most common follow-up time point).
MAIN RESULTS:
This review included 85 trials which randomised 23,430 people with CHD. This latest update identified 22 new trials (7795 participants). The population included predominantly post-MI and post-revascularisation patients, with a mean age ranging from 47 to 77 years. In the last decade, the median percentage of women with CHD has increased from 11% to 17%, but females still account for a similarly small percentage of participants recruited overall ( < 15%). Twenty-one of the included trials were performed in low- and middle-income countries (LMICs). Overall trial reporting was poor, although there was evidence of an improvement in quality over the last decade. The median longest follow-up time was 12 months (range 6 months to 19 years). At short-term follow-up (6 to 12 months), exercise-based CR likely results in a slight reduction in all-cause mortality (risk ratio (RR) 0.87, 95% confidence interval (CI) 0.73 to 1.04; 25 trials; moderate certainty evidence), a large reduction in MI (RR 0.72, 95% CI 0.55 to 0.93; 22 trials; number needed to treat for an additional beneficial outcome (NNTB) 75, 95% CI 47 to 298; high certainty evidence), and a large reduction in all-cause hospitalisation (RR 0.58, 95% CI 0.43 to 0.77; 14 trials; NNTB 12, 95% CI 9 to 21; moderate certainty evidence). Exercise-based CR likely results in little to no difference in risk of cardiovascular mortality (RR 0.88, 95% CI 0.68 to 1.14; 15 trials; moderate certainty evidence), CABG (RR 0.99, 95% CI 0.78 to 1.27; 20 trials; high certainty evidence), and PCI (RR 0.86, 95% CI 0.63 to 1.19; 13 trials; moderate certainty evidence) up to 12 months' follow-up. We are uncertain about the effects of exercise-based CR on cardiovascular hospitalisation, with a wide confidence interval including considerable benefit as well as harm (RR 0.80, 95% CI 0.41 to 1.59; low certainty evidence). There was evidence of substantial heterogeneity across trials for cardiovascular hospitalisations (I2 = 53%), and of small study bias for all-cause hospitalisation, but not for all other outcomes. At medium-term follow-up, although there may be little to no difference in all-cause mortality (RR 0.90, 95% CI 0.80 to 1.02; 15 trials), MI (RR 1.07, 95% CI 0.91 to 1.27; 12 trials), PCI (RR 0.96, 95% CI 0.69 to 1.35; 6 trials), CABG (RR 0.97, 95% CI 0.77 to 1.23; 9 trials), and all-cause hospitalisation (RR 0.92, 95% CI 0.82 to 1.03; 9 trials), a large reduction in cardiovascular mortality was found (RR 0.77, 95% CI 0.63 to 0.93; 5 trials). Evidence is uncertain for difference in risk of cardiovascular hospitalisation (RR 0.92, 95% CI 0.76 to 1.12; 3 trials). At long-term follow-up, although there may be little to no difference in all-cause mortality (RR 0.91, 95% CI 0.75 to 1.10), exercise-based CR may result in a large reduction in cardiovascular mortality (RR 0.58, 95% CI 0.43 to 0.78; 8 trials) and MI (RR 0.67, 95% CI 0.50 to 0.90; 10 trials). Evidence is uncertain for CABG (RR 0.66, 95% CI 0.34 to 1.27; 4 trials), and PCI (RR 0.76, 95% CI 0.48 to 1.20; 3 trials). Meta-regression showed benefits in outcomes were independent of CHD case mix, type of CR, exercise dose, follow-up length, publication year, CR setting, study location, sample size or risk of bias. There was evidence that exercise-based CR may slightly increase HRQoL across several subscales (SF-36 mental component, physical functioning, physical performance, general health, vitality, social functioning and mental health scores) up to 12 months' follow-up; however, these may not be clinically important differences. The eight trial-based economic evaluation studies showed exercise-based CR to be a potentially cost-effective use of resources in terms of gain in quality-adjusted life years (QALYs).
AUTHORS' CONCLUSIONS:
This updated Cochrane Review supports the conclusions of the previous version, that exercise-based CR provides important benefits to people with CHD, including reduced risk of MI, a likely small reduction in all-cause mortality, and a large reduction in all-cause hospitalisation, along with associated healthcare costs, and improved HRQoL up to 12 months' follow-up. Over longer-term follow-up, benefits may include reductions in cardiovascular mortality and MI. In the last decade, trials were more likely to include females, and be undertaken in LMICs, increasing the generalisability of findings. Well-designed, adequately-reported RCTs of CR in people with CHD more representative of usual clinical practice are still needed. Trials should explicitly report clinical outcomes, including mortality and hospital admissions, and include validated HRQoL outcome measures, especially over longer-term follow-up, and assess costs and cost-effectiveness.