Systematic reviews included in this broad synthesis

loading
42 articles (43 Referencias) Revertir Estudificar

Revisión sistemática

No clasificado

Revista The Cochrane database of systematic reviews
Año 2024
Cargando información sobre las referencias
Background: Contractures (reduced range of motion and increased stiffness of a joint) are a frequent complication of stroke. Contractures can interfere with function and cause cosmetic and hygiene problems. Preventing and managing contractures might improve rehabilitation and recovery after stroke. Objectives: To assess the effects of assistive technologies for the management of contractures in adults after a stroke. Search methods: We searched CENTRAL, MEDLINE, Embase, five other databases, and three trials registers in May 2022. We also searched for reference lists of relevant studies, contacted experts in the field, and ran forward citation searches. Selection criteria: Randomised controlled studies (RCTs) that used electrical, mechanical, or electromechanical devices to manage contractures in adults with stroke were eligible for inclusion in this review. We planned to include studies that compared assistive technologies against no treatment, routine therapy, or another assistive technology. Data collection and analysis: Three review authors (working in pairs) selected all studies, extracted data, and assessed risk of bias. The primary outcomes were passive joint range of motion (PROM) with and without standardised force, and indirect measures of PROM. The secondary outcomes included hygiene. We also wanted to evaluate the adverse effects of assistive technology. Effects were expressed as mean differences (MDs) or standardised mean differences (SMDs) with 95% confidence intervals (CIs). Main results: Seven studies fulfilled the inclusion criteria. Five of these were meta-analysed; they included 252 adults treated in acute and subacute rehabilitation settings. All studies compared assistive technology with routine therapy; one study also compared assistive technology with no treatment, but we were unable to obtain separate data for stroke participants. The assistive technologies used in the studies were electrical stimulation, splinting, positioning using a hinged board, and active repetitive motor training using a non-robotic device with electrical stimulation. Only one study applied stretching to end range. Treatment duration ranged from four to 12 weeks. The overall risk of bias was high for all studies. We are uncertain whether:. • electrical stimulation to wrist extensors improves passive range of wrist extension (MD −7.30°, 95% CI −18.26° to 3.66°; 1 study, 81 participants; very low-certainty evidence);• a non-robotic device with electrical stimulation to shoulder flexors improves passive range of shoulder flexion (MD −9.00°, 95% CI −25.71° to 7.71°; 1 study; 50 participants; very low-certainty evidence);• assistive technology improves passive range of wrist extension with standardised force (SMD −0.05, 95% CI −0.39 to 0.29; four studies, 145 participants; very low-certainty evidence):• a non-robotic device with electrical stimulation to elbow extensors improves passive range of elbow extension (MD 0.41°, 95% CI −0.15° to 0.97°; 1 study, 50 participants; very low-certainty evidence). One study reported the adverse outcome of pain when using a hinged board to apply stretch to wrist and finger flexors, and another study reported skin breakdown when using a thumb splint. No studies reported hygiene or indirect measures of PROM. Authors' conclusions: Only seven small RCTs met the eligibility criteria of this review, and all provided very low-certainty evidence. Consequently, we cannot draw firm conclusions on the effects of assistive technology compared with routine therapy or no therapy. It was also difficult to confirm whether there is a risk of harm associated with treatment using assistive technology. Future studies should apply adequate treatment intensity (i.e. magnitude and the duration of stretch) and use valid and reliable outcome measures. Such studies might better identify the role of assistive technology in the management of contractures in adults after a stroke.

Revisión sistemática

No clasificado

Revista The Cochrane database of systematic reviews
Año 2022
Cargando información sobre las referencias
BACKGROUND: Larval source management (LSM) may help reduce Plasmodium parasite transmission in malaria-endemic areas. LSM approaches include habitat modification (permanently or temporarily reducing mosquito breeding aquatic habitats); habitat manipulation (temporary or recurrent change to environment); or use of chemical (e.g. larviciding) or biological agents (e.g. natural predators) to breeding sites. We examined the effectiveness of habitat modification or manipulation (or both), with and without larviciding. This is an update of a review published in 2013. OBJECTIVES: 1. To describe and summarize the interventions on mosquito aquatic habitat modification or mosquito aquatic habitat manipulation, or both, on malaria control. 2. To evaluate the beneficial and harmful effects of mosquito aquatic habitat modification or mosquito aquatic habitat manipulation, or both, on malaria control. SEARCH METHODS: We used standard, extensive Cochrane search methods. The latest search was from January 2012 to 30 November 2021. SELECTION CRITERIA: Randomized controlled trials (RCT) and non-randomized intervention studies comparing mosquito aquatic habitat modification or manipulation (or both) to no treatment or another active intervention. We also included uncontrolled before-after (BA) studies, but only described and summarized the interventions from studies with these designs. Primary outcomes were clinical malaria incidence, malaria parasite prevalence, and malaria parasitaemia incidence. DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods. We assessed risk of bias using the Cochrane RoB 2 tool for RCTs and the ROBINS-I tool for non-randomized intervention studies. We used a narrative synthesis approach to systematically describe and summarize all the interventions included within the review, categorized by the type of intervention (habitat modification, habitat manipulation, combination of habitat modification and manipulation). Our primary outcomes were 1. clinical malaria incidence; 2. malaria parasite prevalence; and 3. malaria parasitaemia incidence. Our secondary outcomes were 1. incidence of severe malaria; 2. anaemia prevalence; 3. mean haemoglobin levels; 4. mortality rate due to malaria; 5. hospital admissions for malaria; 6. density of immature mosquitoes; 7. density of adult mosquitoes; 8. sporozoite rate; 9. entomological inoculation rate; and 10. HARMS: We used the GRADE approach to assess the certainty of the evidence for each type of intervention. MAIN RESULTS: Sixteen studies met the inclusion criteria. Six used an RCT design, six used a controlled before-after (CBA) study design, three used a non-randomized controlled design, and one used an uncontrolled BA study design. Eleven studies were conducted in Africa and five in Asia. Five studies reported epidemiological outcomes and 15 studies reported entomological outcomes. None of the included studies reported on the environmental impacts associated with the intervention. For risk of bias, all trials had some concerns and other designs ranging from moderate to critical. Ten studies assessed habitat manipulation (temporary change to the environment). This included water management (spillways across streams; floodgates; intermittent flooding; different drawdown rates of water; different flooding and draining regimens), shading management (shading of drainage channels with different plants), other/combined management approaches (minimal tillage; disturbance of aquatic habitats with grass clearing and water replenishment), which showed mixed results for entomological outcomes. Spillways across streams, faster drawdown rates of water, shading drainage canals with Napier grass, and using minimal tillage may reduce the density of immature mosquitoes (range of effects from 95% reduction to 1.7 times increase; low-certainty evidence), and spillways across streams may reduce densities of adult mosquitoes compared to no intervention (low-certainty evidence). However, the effect of habitat manipulation on malaria parasite prevalence and clinical malaria incidence is uncertain (very low-certainty evidence). Two studies assessed habitat manipulation with larviciding. This included reducing or removal of habitat sites; and drain cleaning, grass cutting, and minor repairs. It is uncertain whether drain cleaning, grass cutting, and minor repairs reduces malaria parasite prevalence compared to no intervention (odds ratio 0.59, 95% confidence interval (CI) 0.42 to 0.83; very low-certainty evidence). Two studies assessed combination of habitat manipulation and permanent change (habitat modification). This included drainage canals, filling, and planting of papyrus and other reeds for shading near dams; and drainage of canals, removal of debris, land levelling, and filling ditches. Studies did not report on epidemiological outcomes, but entomological outcomes suggest that such activities may reduce the density of adult mosquitoes compared to no intervention (relative risk reduction 0.49, 95% CI 0.47 to 0.50; low-certainty evidence), and preventing water stagnating using drainage of canals, removal of debris, land levelling, and filling ditches may reduce the density of immature mosquitoes compared to no intervention (ranged from 10% to 55% reductions; low-certainty evidence). Three studies assessed combining manipulation and modification with larviciding. This included filling or drainage of water bodies; filling, draining, or elimination of rain pools and puddles at water supply points and stream bed pools; and shoreline work, improvement and maintenance to drainage, clearing vegetation and undergrowth, and filling pools. There were mixed effect sizes for the reduction of entomological outcomes (moderate-certainty evidence). However, filling or draining water bodies probably makes little or no difference to malaria parasite prevalence, haemoglobin levels, or entomological inoculation rate when delivered with larviciding compared to no intervention (moderate-certainty evidence). AUTHORS' CONCLUSIONS: Habitat modification and manipulation interventions for preventing malaria has some indication of benefit in both epidemiological and entomological outcomes. While the data are quite mixed and further studies could help improve the knowledge base, these varied approaches may be useful in some circumstances.

Revisión sistemática

No clasificado

Revista The Cochrane database of systematic reviews
Año 2020
Cargando información sobre las referencias
BACKGROUND: Telerehabilitation offers an alternate way of delivering rehabilitation services. Information and communication technologies are used to facilitate communication between the healthcare professional and the patient in a remote location. The use of telerehabilitation is becoming more viable as the speed and sophistication of communication technologies improve. However, it is currently unclear how effective this model of delivery is relative to rehabilitation delivered face-to-face or when added to usual care. OBJECTIVES: To determine whether the use of telerehabilitation leads to improved ability to perform activities of daily living amongst stroke survivors when compared with (1) in-person rehabilitation (when the clinician and the patient are at the same physical location and rehabilitation is provided face-to-face); or (2) no rehabilitation or usual care. Secondary objectives were to determine whether use of telerehabilitation leads to greater independence in self-care and domestic life and improved mobility, balance, health-related quality of life, depression, upper limb function, cognitive function or functional communication when compared with in-person rehabilitation and no rehabilitation. Additionally, we aimed to report on the presence of adverse events, cost-effectiveness, feasibility and levels of user satisfaction associated with telerehabilitation interventions. SEARCH METHODS: We searched the Cochrane Stroke Group Trials Register (June 2019), the Cochrane Central Register of Controlled Trials (the Cochrane Library, Issue 6, 2019), MEDLINE (Ovid, 1946 to June 2019), Embase (1974 to June 2019), and eight additional databases. We searched trial registries and reference lists. SELECTION CRITERIA: Randomised controlled trials (RCTs) of telerehabilitation in stroke. We included studies that compared telerehabilitation with in-person rehabilitation or no rehabilitation. In addition, we synthesised and described the results of RCTs that compared two different methods of delivering telerehabilitation services without an alternative group. We included rehabilitation programmes that used a combination of telerehabilitation and in-person rehabilitation provided that the greater proportion of intervention was provided via telerehabilitation. DATA COLLECTION AND ANALYSIS: Two review authors independently identified trials on the basis of prespecified inclusion criteria, extracted data and assessed risk of bias. A third review author moderated any disagreements. The review authors contacted investigators to ask for missing information. We used GRADE to assess the quality of the evidence and interpret findings. MAIN RESULTS: We included 22 trials in the review involving a total of 1937 participants. The studies ranged in size from the inclusion of 10 participants to 536 participants, and reporting quality was often inadequate, particularly in relation to random sequence generation and allocation concealment. Selective outcome reporting and incomplete outcome data were apparent in several studies. Study interventions and comparisons varied, meaning that, in many cases, it was inappropriate to pool studies. Intervention approaches included post-hospital discharge support programs, upper limb training, lower limb and mobility retraining and communication therapy for people with post-stroke language disorders. Studies were either conducted upon discharge from hospital or with people in the subacute or chronic phases following stroke. PRIMARY OUTCOME: we found moderate-quality evidence that there was no difference in activities of daily living between people who received a post-hospital discharge telerehabilitation intervention and those who received usual care (based on 2 studies with 661 participants (standardised mean difference (SMD) -0.00, 95% confidence interval (CI) -0.15 to 0.15)). We found low-quality evidence of no difference in effects on activities of daily living between telerehabilitation and in-person physical therapy programmes (based on 2 studies with 75 participants: SMD 0.03, 95% CI -0.43 to 0.48). SECONDARY OUTCOMES: we found a low quality of evidence that there was no difference between telerehabilitation and in-person rehabilitation for balance outcomes (based on 3 studies with 106 participants: SMD 0.08, 95%CI -0.30 to 0.46). Pooling of three studies with 569 participants showed moderate-quality evidence that there was no difference between those who received post-discharge support interventions and those who received usual care on health-related quality of life (SMD 0.03, 95% CI -0.14 to 0.20). Similarly, pooling of six studies (with 1145 participants) found moderate-quality evidence that there was no difference in depressive symptoms when comparing post-discharge tele-support programs with usual care (SMD -0.04, 95% CI -0.19 to 0.11). We found no difference between groups for upper limb function (based on 3 studies with 170 participants: mean difference (MD) 1.23, 95% CI -2.17 to 4.64, low-quality evidence) when a computer program was used to remotely retrain upper limb function in comparison to in-person therapy. Evidence was insufficient to draw conclusions on the effects of telerehabilitation on mobility or participant satisfaction with the intervention. No studies evaluated the cost-effectiveness of telerehabilitation; however, five of the studies reported health service utilisation outcomes or costs of the interventions provided within the study. Two studies reported on adverse events, although no serious trial-related adverse events were reported. AUTHORS' CONCLUSIONS: While there is now an increasing number of RCTs testing the efficacy of telerehabilitation, it is hard to draw conclusions about the effects as interventions and comparators varied greatly across studies. In addition, there were few adequately powered studies and several studies included in this review were at risk of bias. At this point, there is only low or moderate-level evidence testing whether telerehabilitation is a more effective or similarly effective way to provide rehabilitation. Short-term post-hospital discharge telerehabilitation programmes have not been shown to reduce depressive symptoms, improve quality of life, or improve independence in activities of daily living when compared with usual care. Studies comparing telerehabilitation and in-person therapy have also not found significantly different outcomes between groups, suggesting that telerehabilitation is not inferior. Some studies reported that telerehabilitation was less expensive to provide but information was lacking about cost-effectiveness. Only two trials reported on whether or not any adverse events had occurred; these trials found no serious adverse events were related to telerehabilitation. The field is still emerging and more studies are needed to draw more definitive conclusions. In addition, while this review examined the efficacy of telerehabilitation when tested in randomised trials, studies that use mixed methods to evaluate the acceptability and feasibility of telehealth interventions are incredibly valuable in measuring outcomes.

Revisión sistemática

No clasificado

Revista The Cochrane database of systematic reviews
Año 2020
Cargando información sobre las referencias
BACKGROUND: Stroke is caused by the interruption of blood flow to the brain (ischemic stroke) or the rupture of blood vessels within the brain (hemorrhagic stroke) and may lead to changes in perception, cognition, mood, speech, health-related quality of life, and function, such as difficulty walking and using the arm. Activity limitations (decreased function) of the upper extremity are a common finding for individuals living with stroke. Mental practice (MP) is a training method that uses cognitive rehearsal of activities to improve performance of those activities. OBJECTIVES: To determine whether MP improves outcomes of upper extremity rehabilitation for individuals living with the effects of stroke. In particular, we sought to (1) determine the effects of MP on upper extremity activity, upper extremity impairment, activities of daily living, health-related quality of life, economic costs, and adverse effects; and (2) explore whether effects differed according to (a) the time post stroke at which MP was delivered, (b) the dose of MP provided, or (c) the type of comparison performed. SEARCH METHODS: We last searched the Cochrane Stroke Group Trials Register on September 17, 2019. On September 3, 2019, we searched the Cochrane Central Register of Controlled Trials (the Cochrane Library), MEDLINE, Embase, the Cumulative Index to Nursing and Allied Health Literature (CINAHL), PsycINFO, Scopus, Web of Science, the Physiotherapy Evidence Database (PEDro), and REHABDATA. On October 2, 2019, we searched ClinicalTrials.gov and the World Health Organization International Clinical Trials Registry Platform. We reviewed the reference lists of included studies. SELECTION CRITERIA: We included randomized controlled trials (RCTs) of adult participants with stroke who had deficits in upper extremity function (called upper extremity activity). DATA COLLECTION AND ANALYSIS: Two review authors screened titles and abstracts of the citations produced by the literature search and excluded obviously irrelevant studies. We obtained the full text of all remaining studies, and both review authors then independently selected trials for inclusion. We combined studies when the review produced a minimum of two trials employing a particular intervention strategy and a common outcome. We considered the primary outcome to be the ability of the arm to be used for appropriate tasks, called upper extremity activity. Secondary outcomes included upper extremity impairment (such as quality of movement, range of motion, tone, presence of synergistic movement), activities of daily living (ADLs), health-related quality of life (HRQL), economic costs, and adverse events. We assessed risk of bias in the included studies and applied GRADE to assess the certainty of the evidence. We completed subgroup analyses for time since stroke, dosage of MP, type of comparison, and type of arm activity outcome measure. MAIN RESULTS: We included 25 studies involving 676 participants from nine countries. For the comparison of MP in addition to other treatment versus the other treatment, MP in combination with other treatment appears more effective in improving upper extremity activity than the other treatment without MP (standardized mean difference [SMD] 0.66, 95% confidence interval [CI] 0.39 to 0.94; I² = 39%; 15 studies; 397 participants); the GRADE certainty of evidence score was moderate based on risk of bias for the upper extremity activity outcome. For upper extremity impairment, results were as follows: SMD 0.59, 95% CI 0.30 to 0.87; I² = 43%; 15 studies; 397 participants, with a GRADE score of moderate, based on risk of bias. For ADLs, results were as follows: SMD 0.08, 95% CI -0.24 to 0.39; I² = 0%; 4 studies; 157 participants; the GRADE score was low due to risk of bias and small sample size. For the comparison of MP versus conventional treatment, the only outcome with available data to combine (3 studies; 50 participants) was upper extremity impairment (SMD 0.34, 95% CI -0.33 to 1.00; I² = 21%); GRADE for the impairment outcome in this comparison was low due to risk of bias and small sample size. Subgroup analyses of time post stroke, dosage of MP, or comparison type for the MP in combination with other rehabilitation treatment versus the other treatment comparison showed no differences. The secondary outcome of health-related quality of life was reported in only one study, and no study noted the outcomes of economic costs and adverse events. AUTHORS' CONCLUSIONS: Moderate-certainty evidence shows that MP in addition to other treatment versus the other treatment appears to be beneficial in improving upper extremity activity. Moderate-certainty evidence also shows that MP in addition to other treatment versus the other treatment appears to be beneficial in improving upper extremity impairment after stroke. Low-certainty evidence suggests that ADLs may not be improved with MP in addition to other treatment versus the other treatment. Low-certainty evidence also suggests that MP versus conventional treatment may not improve upper extremity impairment. Further study is required to evaluate effects of MP on time post stroke, the volume of MP required to affect outcomes, and whether improvement is maintained over the long term.

Revisión sistemática

No clasificado

Autores Elsner B , Kugler J , Pohl M , Mehrholz J
Revista The Cochrane database of systematic reviews
Año 2020
Cargando información sobre las referencias
BACKGROUND: Stroke is one of the leading causes of disability worldwide. Functional impairment, resulting in poor performance in activities of daily living (ADL) among stroke survivors is common. Current rehabilitation approaches have limited effectiveness in improving ADL performance, function, muscle strength, and cognitive abilities (including spatial neglect) after stroke, with improving cognition being the number one research priority in this field. A possible adjunct to stroke rehabilitation might be non-invasive brain stimulation by transcranial direct current stimulation (tDCS) to modulate cortical excitability, and hence to improve these outcomes in people after stroke. OBJECTIVES: To assess the effects of tDCS on ADL, arm and leg function, muscle strength and cognitive abilities (including spatial neglect), dropouts and adverse events in people after stroke. SEARCH METHODS: We searched the Cochrane Stroke Group Trials Register, CENTRAL, MEDLINE, Embase and seven other databases in January 2019. In an effort to identify further published, unpublished, and ongoing trials, we also searched trials registers and reference lists, handsearched conference proceedings, and contacted authors and equipment manufacturers. SELECTION CRITERIA: This is the update of an existing review. In the previous version of this review, we focused on the effects of tDCS on ADL and function. In this update, we broadened our inclusion criteria to compare any kind of active tDCS for improving ADL, function, muscle strength and cognitive abilities (including spatial neglect) versus any kind of placebo or control intervention. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed trial quality and risk of bias, extracted data, and applied GRADE criteria. If necessary, we contacted study authors to ask for additional information. We collected information on dropouts and adverse events from the trial reports. MAIN RESULTS: We included 67 studies involving a total of 1729 patients after stroke. We also identified 116 ongoing studies. The risk of bias did not differ substantially for different comparisons and outcomes. The majority of participants had ischaemic stroke, with mean age between 43 and 75 years, in the acute, postacute, and chronic phase after stroke, and level of impairment ranged from severe to less severe. Included studies differed in terms of type, location and duration of stimulation, amount of current delivered, electrode size and positioning, as well as type and location of stroke. We found 23 studies with 781 participants examining the effects of tDCS versus sham tDCS (or any other passive intervention) on our primary outcome measure, ADL after stroke. Nineteen studies with 686 participants reported absolute values and showed evidence of effect regarding ADL performance at the end of the intervention period (standardised mean difference (SMD) 0.28, 95% confidence interval (CI) 0.13 to 0.44; random-effects model; moderate-quality evidence). Four studies with 95 participants reported change scores, and showed an effect (SMD 0.48, 95% CI 0.02 to 0.95; moderate-quality evidence). Six studies with 269 participants assessed the effects of tDCS on ADL at the end of follow-up and provided absolute values, and found improved ADL (SMD 0.31, 95% CI 0.01 to 0.62; moderate-quality evidence). One study with 16 participants provided change scores and found no effect (SMD -0.64, 95% CI -1.66 to 0.37; low-quality evidence). However, the results did not persist in a sensitivity analysis that included only trials with proper allocation concealment. Thirty-four trials with a total of 985 participants measured upper extremity function at the end of the intervention period. Twenty-four studies with 792 participants that presented absolute values found no effect in favour of tDCS (SMD 0.17, 95% CI -0.05 to 0.38; moderate-quality evidence). Ten studies with 193 participants that presented change values also found no effect (SMD 0.33, 95% CI -0.12 to 0.79; low-quality evidence). Regarding the effects of tDCS on upper extremity function at the end of follow-up, we identified five studies with a total of 211 participants (absolute values) without an effect (SMD -0.00, 95% CI -0.39 to 0.39; moderate-quality evidence). Three studies with 72 participants presenting change scores found an effect (SMD 1.07; 95% CI 0.04 to 2.11; low-quality evidence). Twelve studies with 258 participants reported outcome data for lower extremity function and 18 studies with 553 participants reported outcome data on muscle strength at the end of the intervention period, but there was no effect (high-quality evidence). Three studies with 156 participants reported outcome data on muscle strength at follow-up, but there was no evidence of an effect (moderate-quality evidence). Two studies with 56 participants found no evidence of effect of tDCS on cognitive abilities (low-quality evidence), but one study with 30 participants found evidence of effect of tDCS for improving spatial neglect (very low-quality evidence). In 47 studies with 1330 participants, the proportions of dropouts and adverse events were comparable between groups (risk ratio (RR) 1.25, 95% CI 0.74 to 2.13; random-effects model; moderate-quality evidence).  AUTHORS' CONCLUSIONS: There is evidence of very low to moderate quality on the effectiveness of tDCS versus control (sham intervention or any other intervention) for improving ADL outcomes after stroke. However, the results did not persist in a sensitivity analyses including only trials with proper allocation concealment. Evidence of low to high quality suggests that there is no effect of tDCS on arm function and leg function, muscle strength, and cognitive abilities in people after stroke. Evidence of very low quality suggests that there is an effect on hemispatial neglect. There was moderate-quality evidence that adverse events and numbers of people discontinuing the treatment are not increased. Future studies should particularly engage with patients who may benefit the most from tDCS after stroke, but also should investigate the effects in routine application. Therefore, further large-scale randomised controlled trials with a parallel-group design and sample size estimation for tDCS are needed.

Revisión sistemática

No clasificado

Revista The Cochrane database of systematic reviews
Año 2018
Cargando información sobre las referencias
BACKGROUND: Electromechanical and robot-assisted arm training devices are used in rehabilitation, and may help to improve arm function after stroke. OBJECTIVES: To assess the effectiveness of electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength in people after stroke. We also assessed the acceptability and safety of the therapy. SEARCH METHODS: We searched the Cochrane Stroke Group's Trials Register (last searched January 2018), the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library 2018, Issue 1), MEDLINE (1950 to January 2018), Embase (1980 to January 2018), CINAHL (1982 to January 2018), AMED (1985 to January 2018), SPORTDiscus (1949 to January 2018), PEDro (searched February 2018), Compendex (1972 to January 2018), and Inspec (1969 to January 2018). We also handsearched relevant conference proceedings, searched trials and research registers, checked reference lists, and contacted trialists, experts, and researchers in our field, as well as manufacturers of commercial devices. SELECTION CRITERIA: Randomised controlled trials comparing electromechanical and robot-assisted arm training for recovery of arm function with other rehabilitation or placebo interventions, or no treatment, for people after stroke. DATA COLLECTION AND ANALYSIS: Two review authors independently selected trials for inclusion, assessed trial quality and risk of bias, used the GRADE approach to assess the quality of the body of evidence, and extracted data. We contacted trialists for additional information. We analysed the results as standardised mean differences (SMDs) for continuous variables and risk differences (RDs) for dichotomous variables. MAIN RESULTS: We included 45 trials (involving 1619 participants) in this update of our review. Electromechanical and robot-assisted arm training improved activities of daily living scores (SMD 0.31, 95% confidence interval (CI) 0.09 to 0.52, P = 0.0005; I² = 59%; 24 studies, 957 participants, high-quality evidence), arm function (SMD 0.32, 95% CI 0.18 to 0.46, P < 0.0001, I² = 36%, 41 studies, 1452 participants, high-quality evidence), and arm muscle strength (SMD 0.46, 95% CI 0.16 to 0.77, P = 0.003, I² = 76%, 23 studies, 826 participants, high-quality evidence). Electromechanical and robot-assisted arm training did not increase the risk of participant dropout (RD 0.00, 95% CI -0.02 to 0.02, P = 0.93, I² = 0%, 45 studies, 1619 participants, high-quality evidence), and adverse events were rare. AUTHORS' CONCLUSIONS: People who receive electromechanical and robot-assisted arm training after stroke might improve their activities of daily living, arm function, and arm muscle strength. However, the results must be interpreted with caution although the quality of the evidence was high, because there were variations between the trials in: the intensity, duration, and amount of training; type of treatment; participant characteristics; and measurements used.

Revisión sistemática

No clasificado

Revista Cochrane Database of Systematic Reviews
Año 2018
Cargando información sobre las referencias
BACKGROUND: Mirror therapy is used to improve motor function after stroke. During mirror therapy, a mirror is placed in the person's midsagittal plane, thus reflecting movements of the non-paretic side as if it were the affected side. OBJECTIVES: To summarise the effectiveness of mirror therapy compared with no treatment, placebo or sham therapy, or other treatments for improving motor function and motor impairment after stroke. We also aimed to assess the effects of mirror therapy on activities of daily living, pain, and visuospatial neglect. SEARCH METHODS: We searched the Cochrane Stroke Group's Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, CINAHL, AMED, PsycINFO and PEDro (last searched 16 August 2017). We also handsearched relevant conference proceedings, trials and research registers, checked reference lists, and contacted trialists, researchers and experts in our field of study. SELECTION CRITERIA: We included randomised controlled trials (RCTs) and randomised cross-over trials comparing mirror therapy with any control intervention for people after stroke. DATA COLLECTION AND ANALYSIS: Two review authors independently selected trials based on the inclusion criteria, documented the methodological quality, assessed risks of bias in the included studies, and extracted data. We assessed the quality of the evidence using the GRADE approach. We analysed the results as standardised mean differences (SMDs) or mean differences (MDs) for continuous variables, and as odds ratios (ORs) for dichotomous variables. MAIN RESULTS: We included 62 studies with a total of 1982 participants that compared mirror therapy with other interventions. Of these, 57 were randomised controlled trials and five randomised cross-over trials. Participants had a mean age of 59 years (30 to 73 years). Mirror therapy was provided three to seven times a week, between 15 and 60 minutes for each session for two to eight weeks (on average five times a week, 30 minutes a session for four weeks).When compared with all other interventions, we found moderate-quality evidence that mirror therapy has a significant positive effect on motor function (SMD 0.47, 95% CI 0.27 to 0.67; 1173 participants; 36 studies) and motor impairment (SMD 0.49, 95% CI 0.32 to 0.66; 1292 participants; 39 studies). However, effects on motor function are influenced by the type of control intervention. Additionally, based on moderate-quality evidence, mirror therapy may improve activities of daily living (SMD 0.48, 95% CI 0.30 to 0.65; 622 participants; 19 studies). We found low-quality evidence for a significant positive effect on pain (SMD −0.89, 95% CI −1.67 to −0.11; 248 participants; 6 studies) and no clear effect for improving visuospatial neglect (SMD 1.06, 95% CI −0.10 to 2.23; 175 participants; 5 studies). No adverse effects were reported. AUTHORS' CONCLUSIONS: The results indicate evidence for the effectiveness of mirror therapy for improving upper extremity motor function, motor impairment, activities of daily living, and pain, at least as an adjunct to conventional rehabilitation for people after stroke. Major limitations are small sample sizes and lack of reporting of methodological details, resulting in uncertain evidence quality.

Revisión sistemática

No clasificado

Revista Cochrane Database of Systematic Reviews
Año 2017
Cargando información sobre las referencias
Antecedentes: Las contracturas son una complicación común de las afecciones neurológicas y no neurológicas, y se caracterizan por una reducción de la movilidad articular. Estiramiento es ampliamente utilizado para el tratamiento y la prevención de contracturas. Sin embargo, no está claro si el estiramiento es efectivo. Esta revisión es una actualización de la versión original de esta revisión en 2010. El objetivo de esta revisión fue determinar los efectos del estiramiento sobre contracturas en personas con o con riesgo de desarrollar contracturas. Los resultados de interés fueron movilidad articular, calidad de vida, dolor, limitaciones de actividad, restricciones de participación, espasticidad y eventos adversos. Métodos de búsqueda: En noviembre de 2015 buscamos CENTRAL, DARE, HTA; MEDLINE; Embase; CINAHL; SCI-EXPANDED; PEDro y registros de ensayos. CRITERIOS DE SELECCIÓN: Se incluyeron ensayos controlados aleatorios y ensayos clínicos controlados de estiramiento aplicado con el propósito de tratar o prevenir contracturas. Dos revisores seleccionaron de forma independiente los ensayos, extrajeron los datos y evaluaron el riesgo de sesgo. Los resultados de interés fueron la movilidad articular, la calidad de vida, el dolor, las limitaciones de actividad, las restricciones de participación y los eventos adversos. Evaluamos los resultados a corto plazo (hasta una semana después del último tramo) ya largo plazo (más de una semana). Se expresaron los efectos como diferencias de medias (MD) o diferencias de medias estandarizadas (SMD) con intervalos de confianza del 95% (IC). Se realizaron meta-análisis con un modelo de efectos aleatorios. Evaluamos la calidad del cuerpo de evidencia para los principales resultados utilizando GRADE. Resultados principales: 49 estudios con 2135 participantes cumplieron con los criterios de inclusión. Ningún estudio realizó estiramiento durante más de siete meses. Un poco más de la mitad de los estudios (51%) tenían bajo riesgo de sesgo de selección; Todos los estudios estaban en riesgo de sesgo de detección de auto-informó resultados como el dolor y en riesgo de sesgo de rendimiento debido a la dificultad de cegamiento de la intervención. Sin embargo, la mayoría de los estudios tenían bajo riesgo de sesgo de detección para los resultados objetivos, incluyendo el rango de movimiento, y la mayoría de los estudios estaban libres de desgaste y sesgos de notificación selectiva. El efecto de estos sesgos era poco probable que fuera importante, dado que había poco beneficio con el tratamiento. Hubo evidencia de alta calidad de que el estiramiento no tuvo efectos clínicamente importantes a corto plazo sobre la movilidad articular en personas con afecciones neurológicas (MD 2 °, IC del 95% 0 ° a 3 °, 26 estudios con 699 participantes) o no neurológicas (SMD 0,2; IC del 95%: 0 a 0,3; 19 estudios con 925 participantes). En personas con condiciones neurológicas, no se sabía si el estiramiento tuvo efectos clínicamente importantes a corto plazo sobre el dolor (DME 0,2; IC del 95%: -0,1 a 0,5; 5 estudios con 174 participantes) o limitaciones de actividad (DME 0,2; IC del 95%: -0,1 a 0,5; 8 estudios con 247 participantes). Ningún ensayo examinó los efectos a corto plazo del estiramiento sobre la calidad de vida o las restricciones de participación en las personas con afecciones neurológicas. Cinco estudios con 145 participantes informaron ocho eventos adversos incluyendo descomposición de la piel, moretones, ampollas y dolor, pero no fue posible analizar estadísticamente estos datos. En personas con condiciones no neurológicas, había evidencia de alta calidad de que el estiramiento no tenía importancia clínica (SMD -0,2; IC del 95%: -0,4 a 0,1; 7 estudios con 422 participantes) y pruebas de calidad moderada de que el estiramiento no tuvo efectos a corto plazo clínicamente importantes sobre la calidad de vida (SMD 0,3, 95 % CI -0,1 a 0,7, 2 estudios con 97 participantes). El efecto a corto plazo del estiramiento sobre las limitaciones de actividad (DME 0,1; IC del 95%: -0,2 a 0,3; 5 estudios con 356 participantes) y las restricciones de participación fueron inciertos (DME -0,2; IC del 95%: -0,6 a 0,1; 2 estudios con 192 Participantes). Nueve estudios con 635 participantes reportaron 41 eventos adversos incluyendo entumecimiento, dolor, fenómeno de Raynauds, trombosis venosa, necesidad de manipulación bajo anestesia, infecciones de heridas, hematoma, déficit de flexión e hinchazón, pero no fue posible analizar estadísticamente estos datos. Hubo pruebas de alta calidad de que el estiramiento no tuvo efectos clínicamente importantes sobre la movilidad de las articulaciones en personas con o sin afecciones neurológicas si se realizaron durante menos de siete meses. Los análisis de sensibilidad indican que los resultados fueron robustos en estudios con riesgo de sesgos de selección y detección en comparación con estudios con bajo riesgo de sesgo. Los análisis de subgrupos también sugieren que el efecto del estiramiento es consistente en personas con diferentes tipos de afecciones neurológicas o no neurológicas. Los efectos del estiramiento realizado por períodos de más de siete meses no han sido investigados. Hubo pruebas de moderada y alta calidad de que el estiramiento no tuvo efectos clínicamente importantes a corto plazo sobre la calidad de vida o el dolor en personas con afecciones no neurológicas, respectivamente. Los efectos a corto plazo del estiramiento sobre la calidad de vida y el dolor en las personas con afecciones neurológicas y los efectos a corto plazo del estiramiento sobre las limitaciones de la actividad y las restricciones de participación de las personas con y sin condiciones neurológicas son inciertas.

Revisión sistemática

No clasificado

Revista Cochrane Database of Systematic Reviews
Año 2017
Cargando información sobre las referencias
La lesión cerebral adquirida (ABI) puede resultar en alteraciones en la función motora, lenguaje, cognición y procesamiento sensorial, y en trastornos emocionales, que pueden reducir gravemente la calidad de vida de un sobreviviente. Las intervenciones musicales se han utilizado en la rehabilitación para estimular las funciones cerebrales involucradas en el movimiento, la cognición, el habla, las emociones y las percepciones sensoriales. Se necesitó una actualización de la revisión sistemática publicada en 2010 para medir la eficacia de las intervenciones musicales en la rehabilitación de las personas con ABI. OBJETIVOS: Evaluar los efectos de las intervenciones musicales en los resultados funcionales en las personas con ABI. Ampliamos los criterios de nuestra revisión actual para: 1) examinar la eficacia de las intervenciones musicales para abordar la recuperación en las personas con ABI incluyendo la marcha, la función de las extremidades superiores, la comunicación, el estado de ánimo y las emociones, el funcionamiento cognitivo, las habilidades sociales, el dolor, los resultados del comportamiento y las actividades De la vida diaria y eventos adversos; 2) comparar la eficacia de las intervenciones musicales y la atención estándar con a) la atención estándar sola, b) la atención estándar y los tratamientos con placebo, o c) la atención estándar y otras terapias; 3) comparar la eficacia de los diferentes tipos de intervenciones musicales (musicoterapia impartida por musicoterapeutas entrenados versus intervenciones musicales impartidas por otros profesionales). Métodos de búsqueda Se realizaron búsquedas en el Registro de ensayos del Grupo Cochrane de Accidentes Cerebrovasculares (Cochrane Stroke Group) (enero de 2016), en el Registro Central Cochrane de Ensayos Controlados (CENTRAL) (2015, número 6), MEDLINE (1946 a junio 2015), Embase (1980 a junio 2015) (1982 a junio de 2015), PsycINFO (1806 a junio de 2015), LILACS (1982 a enero de 2016) y AMED (1985 a junio de 2015). Buscamos manualmente revistas de musicoterapia y actas de congresos, búsquedas de disertaciones y bases de datos musicales especializadas, registros de ensayos e investigaciones, listas de referencias y contacto con expertos y asociaciones de musicoterapia para identificar investigaciones no publicadas. No impusimos ninguna restricción de idioma. Se realizó la búsqueda original en 2009. CRITERIOS DE SELECCIÓN: Se incluyeron todos los ensayos controlados aleatorios y ensayos clínicos controlados que compararon las intervenciones musicales y la atención estándar con la atención estándar sola o combinada con otras terapias. Se examinaron los estudios que incluyeron a personas mayores de 16 años de edad que tenían ABI de naturaleza no degenerativa y que participaban en programas de tratamiento ofrecidos en el hospital, ambulatorio, o la comunidad. Se incluyeron estudios en cualquier idioma, publicados e inéditos. Dos revisores extrajeron los datos de forma independiente y evaluaron el riesgo de sesgo de los estudios incluidos. Nos pusimos en contacto con investigadores del ensayo para obtener datos faltantes o para obtener información adicional cuando era necesario. En la medida de lo posible, presentamos resultados para resultados continuos en metanálisis usando diferencias de medias (MDs) y diferencias de medias estandarizadas (SMDs). Se utilizaron las puntuaciones post-prueba. En los casos de diferencia significativa basal, se utilizaron las puntuaciones de cambio. Se realizó un análisis de sensibilidad para evaluar el impacto del método de asignación al azar. PRINCIPALES RESULTADOS: Se identificaron 22 nuevos estudios para esta actualización. La evidencia para esta actualización se basa en 29 ensayos con 775 participantes. Una intervención musical conocida como estimulación auditiva rítmica puede ser beneficiosa para mejorar los siguientes parámetros de la marcha después del accidente cerebrovascular. Se encontró un aumento de la velocidad de la marcha de 11,34 metros por minuto (intervalo de confianza del 95% (IC) 8,40 a 14,28, 9 ensayos, 268 participantes, P <0,00001). La longitud de la zancada del lado afectado también puede beneficiarse, con un promedio de 0,12 metros (IC del 95%: 0,04 a 0,20, 5 ensayos, 129 participantes, P = 0,003, evidencia de calidad moderada). Se encontró una mejoría promedio de la marcha general de 7,67 unidades en el índice de marcha dinámica (95% IC 5,67 a 9,67, 2 ensayos, 48 ​​participantes, P <0,00001). También puede haber una mejoría en la cadencia de la marcha, con un incremento promedio de 10,77 pasos por minuto (IC del 95%: 4,36 a 17,18, 7 ensayos, 223 participantes, P = 0,001, evidencia de baja calidad). Mejorando el tiempo de la función de la extremidad superior después del accidente cerebrovascular, como se registró por una reducción de 1,08 segundos en la Prueba de Función Motora de Lobo (IC del 95%: -1,69 a -0,47; 2 ensayos; 122 participantes: evidencia de muy baja calidad). Beneficiosos para los resultados de la comunicación en personas con afasia después del accidente cerebrovascular. En general, la comunicación mejoró en 0,75 desviaciones estándar en el grupo de intervención, un efecto moderado (IC del 95%: 0,11 a 1,39, 3 ensayos, 67 participantes, P = 0,02, evidencia de muy baja calidad). Se indicó que la denominación se había mejorado en 9.79 unidades en el Aquisgrán Aphasia Test (IC del 95%: 1.37 a 18.21, 2 ensayos, 35 participantes, P = 0.02). Las intervenciones musicales pueden tener un efecto beneficioso sobre la repetición del habla, reportado como un aumento promedio de 8,90 puntos en el Aquisgrán Aphasia Test (IC del 95%: 3,25 a 14).55; 2 ensayos; 35 participantes; P = 0,002). Puede haber una mejoría en la calidad de vida después de un accidente cerebrovascular usando estimulación auditiva rítmica, reportada con una mejora de 0,89 desviaciones estándar en la Escala de Calidad de Vida Específica del Stroke, que se considera un gran efecto (IC del 95%: 0,32 a 1,46, 2 ensayos, 53 participantes, P = 0,002, evidencia de baja calidad). No encontramos ninguna evidencia fuerte de los efectos sobre la memoria y la atención. Los datos fueron insuficientes para examinar el efecto de las intervenciones musicales en otros resultados. La mayoría de los estudios incluidos en esta revisión actualizada presentaron un alto riesgo de sesgo, por lo tanto la calidad de la evidencia es baja. Las intervenciones musicales pueden ser beneficiosas para la marcha, el momento de la función de las extremidades superiores, los resultados de la comunicación y la calidad de vida después del accidente cerebrovascular. Estos resultados son alentadores, pero se necesitan ensayos controlados aleatorios de mayor calidad en todos los resultados antes de que se puedan hacer recomendaciones para la práctica clínica.

Revisión sistemática

No clasificado

Cargando información sobre las referencias
El entrenamiento de tareas repetitivas (RTT) implica la práctica activa de las actividades motrices específicas de la tarea y es un componente de los enfoques actuales de la terapia en la rehabilitación del accidente cerebrovascular. OBJETIVOS: Objetivo principal: Determinar si el RTT mejora la función / alcance de las extremidades superiores y la función / equilibrio de las extremidades inferiores en adultos después del accidente cerebrovascular. Objetivos secundarios: 1) Determinar el efecto del RTT sobre las medidas de resultado secundarias, incluidas las actividades de la vida diaria, la función motora global, la calidad de vida / estado de salud y los eventos adversos. 2) Determinar los factores que podrían influir en las medidas de resultado primarias y secundarias, incluyendo el efecto de la "dosis" de la práctica de la tarea; Tipo de tarea (terapia completa, tarea mixta o única); El momento de la intervención y el tipo de intervención. Métodos de búsqueda: Se realizaron búsquedas en el Registro de Ensayos del Grupo Cochrane de Accidentes Cerebrovasculares (Cochrane Stroke Group) (4 de marzo de 2016); El Registro Cochrane Central de Ensayos Controlados (CENTRAL) (Cochrane Library 2016, Número 5: del 1 de octubre de 2006 al 24 de junio de 2016); MEDLINE (del 1 de octubre de 2006 al 8 de marzo de 2016); Embase (del 1 de octubre de 2006 al 8 de marzo de 2016); CINAHL (2006 a 23 de junio de 2016); AMED (2006 al 21 de junio de 2016) y SPORTSDiscus (2006 al 21 de junio de 2016). Criterios de selección: Ensayos aleatorios / cuasialeatorios en adultos después del accidente cerebrovascular, en los que la intervención fue una secuencia motora activa realizada de forma repetitiva en una sola sesión de entrenamiento, dirigida hacia un objetivo funcional claro. Recopilación y análisis de datos: Dos autores revisaron de forma independiente los resúmenes, extrajeron los datos y evaluaron los ensayos. Determinamos la calidad de la evidencia dentro de cada estudio y grupo de resultados utilizando la herramienta Cochrane "Riesgo de sesgo" y GRADE (Grados de Recomendación, Evaluación, Desarrollo y Evaluación). No evaluamos los datos de seguimiento de resultados utilizando GRADE. Nos pusimos en contacto con los autores de los ensayos para obtener información adicional. Resultados principales Se incluyeron 33 ensayos con 36 pares de intervención-control y 1853 participantes. El riesgo de sesgo presente en muchos estudios no estaba claro debido a la mala información; La evidencia ha sido clasificada como "moderada" o "baja" cuando se utiliza el sistema GRADE. Hay evidencia de baja calidad de que el RTT mejora la función del brazo (diferencia de medias estandarizada (DME) 0,25, intervalo de confianza del 95% (Cl) 0,01 a 0,49; 11 estudios, número de participantes analizados = 749), función manual (SMD 0,25; IC 0,00 a 0,51, ocho estudios, número de participantes analizados = 619), y medidas funcionales de miembros inferiores (DME 0,29; IC del 95%: 0,10 a 0,48; cinco ensayos, número de participantes analizados = 419). Hay una evidencia de calidad moderada de que el RTT mejora la distancia caminando (diferencia de medias 34,80; IC del 95%: 18,19 a 51,41; nueve estudios, número de participantes analizados = 610) y ambulación funcional (DME 0,35; IC del 95%: 0,04 a 0,66; Ocho estudios, número de participantes analizados = 525). Se encontraron diferencias significativas entre los grupos de ambas extremidades superiores (DME 0,92, IC del 95%: 0,58 a 1,26, tres estudios, número de participantes analizados = 153) y miembros inferiores (DME 0,34, IC del 95%: 0,16 a 0,52; Número de participantes analizados = 471) resultados hasta seis meses después del tratamiento pero no después de seis meses. Los efectos no fueron modificados por tipo de intervención, la dosis de práctica de la tarea o el tiempo transcurrido desde el accidente cerebrovascular de miembros superiores o inferiores. No hubo pruebas suficientes para estar seguros del riesgo de eventos adversos. CONCLUSIONES DE LOS AUTORES: Existe evidencia de baja a moderada calidad de que el RTT mejora la función de las extremidades superiores e inferiores; Las mejoras se mantuvieron hasta seis meses después del tratamiento. Las investigaciones adicionales deben centrarse en el tipo y la cantidad de formación, incluyendo las formas de medir el número de repeticiones realizadas por los participantes. La definición de RTT necesitará revisar antes de actualizaciones adicionales de esta revisión con el fin de asegurar que siga siendo clínicamente significativa y distinguible de otras intervenciones.