Estudios primarios incluidos en esta revisión sistemática

loading
14 articles (17 Referencias) Revertir Estudificar

Estudio primario

No clasificado

Revista Psychological medicine
Año 2021
Cargando información sobre las referencias
BACKGROUND: Recent evidence suggests that cannabidiol (CBD), a non-intoxicating ingredient present in cannabis extract, has an antipsychotic effect in people with established psychosis. However, the effect of CBD on the neurocognitive mechanisms underlying psychosis is unknown. METHODS: Patients with established psychosis on standard antipsychotic treatment were studied on separate days at least one week apart, to investigate the effects of a single dose of orally administered CBD (600 mg) compared to a matched placebo (PLB), using a double-blind, randomized, PLB-controlled, repeated-measures, within-subject cross-over design. Three hours after taking the study drug participants were scanned using a block design functional magnetic resonance imaging (fMRI) paradigm, while performing a verbal paired associate learning task. Fifteen psychosis patients completed both study days, 13 completed both scanning sessions. Nineteen healthy controls (HC) were also scanned using the same fMRI paradigm under identical conditions, but without any drug administration. Effects of CBD on brain activation measured using the blood oxygen level-dependent hemodynamic response fMRI signal were studied in the mediotemporal, prefrontal, and striatal regions of interest. RESULTS: Compared to HC, psychosis patients under PLB had altered prefrontal activation during verbal encoding, as well as altered mediotemporal and prefrontal activation and greater mediotemporal-striatal functional connectivity during verbal recall. CBD attenuated dysfunction in these regions such that activation under its influence was intermediate between the PLB condition and HC. CBD also attenuated hippocampal-striatal functional connectivity and caused trend-level symptom reduction in psychosis patients. CONCLUSIONS: This suggests that normalization of mediotemporal and prefrontal dysfunction and mediotemporal-striatal functional connectivity may underlie the antipsychotic effects of CBD. (PsycInfo Database Record (c) 2021 APA, all rights reserved)

Estudio primario

No clasificado

Revista Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
Año 2019
Cargando información sobre las referencias
There is increasing interest in the use of cannabis and its major non-intoxicating component cannabidiol (CBD) as a treatment for mental health and neurodevelopmental disorders, such as autism spectrum disorder (ASD). However, before launching large-scale clinical trials, a better understanding of the effects of CBD on brain would be desirable. Preclinical evidence suggests that one aspect of the polypharmacy of CBD is that it modulates brain excitatory glutamate and inhibitory γ-aminobutyric acid (GABA) levels, including in brain regions linked to ASD, such as the basal ganglia (BG) and the dorsomedial prefrontal cortex (DMPFC). However, differences in glutamate and GABA pathways in ASD mean that the response to CBD in people with and without ASD may be not be the same. To test whether CBD ‘shifts’ glutamate and GABA levels; and to examine potential differences in this response in ASD, we used magnetic resonance spectroscopy (MRS) to measure glutamate (Glx = glutamate + glutamine) and GABA+ (GABA + macromolecules) levels in 34 healthy men (17 neurotypicals, 17 ASD). Data acquisition commenced 2 h (peak plasma levels) after a single oral dose of 600 mg CBD or placebo. Test sessions were at least 13 days apart. Across groups, CBD increased subcortical, but decreased cortical, Glx. Across regions, CBD increased GABA+ in controls, but decreased GABA+ in ASD; the group difference in change in GABA + in the DMPFC was significant. Thus, CBD modulates glutamate-GABA systems, but prefrontal-GABA systems respond differently in ASD. Our results do not speak to the efficacy of CBD. Future studies should examine the effects of chronic administration on brain and behaviour, and whether acute brain changes predict longer-term response. (PsycInfo Database Record (c) 2021 APA, all rights reserved)

Estudio primario

No clasificado

Revista Journal of psychopharmacology (Oxford, England)
Año 2019
Cargando información sobre las referencias
BACKGROUND: Two major constituents of cannabis are Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). THC is the main psychoactive component; CBD may buffer the user against the harmful effects of THC. AIMS: We examined the effects of two strains of cannabis and placebo on the human brain’s resting-state networks using fMRI. METHODS: Seventeen healthy volunteers (experienced with cannabis, but not regular users) underwent three drug treatments and scanning sessions. Treatments were cannabis containing THC (Cann−CBD; 8 mg THC), cannabis containing THC with CBD (Cann+CBD; 8 mg THC + 10 mg CBD), and matched placebo cannabis. Seed-based resting-state functional connectivity analyses were performed on three brain networks: the default mode (DMN; defined by positive connectivity with the posterior cingulate cortex: PCC+), executive control (ECN; defined by negative connectivity with the posterior cingulate cortex: PCC−) and salience (SAL; defined by positive connectivity with the anterior insula: AI+) network. RESULTS: Reductions in functional connectivity (relative to placebo) were seen in the DMN (PCC+) and SAL (AI+) networks for both strains of cannabis, with spatially dissociable effects. Across the entire salience network (AI+), Cann−CBD reduced connectivity relative to Cann+CBD. The PCC in the DMN was specifically disrupted by Cann−CBD, and this effect correlated with subjective drug effects, including feeling ‘stoned’ and ‘high’. CONCLUSIONS: THC disrupts the DMN, and the PCC is a key brain region involved in the subjective experience of THC intoxication. CBD restores disruption of the salience network by THC, which may explain its potential to treat disorders of salience such as psychosis and addiction. (PsycInfo Database Record (c) 2021 APA, all rights reserved)

Estudio primario

No clasificado

Revista Translational psychiatry
Año 2019
Cargando información sobre las referencias
Accumulating evidence points towards the antipsychotic potential of cannabidiol. However, the neurocognitive mechanisms underlying the antipsychotic effect of cannabidiol remain unclear. We investigated this in a double-blind, placebo-controlled, parallel-arm study. We investigated 33 antipsychotic-naïve subjects at clinical high risk for psychosis (CHR) randomised to 600 mg oral cannabidiol or placebo and compared them with 19 healthy controls. We used the monetary incentive delay task while participants underwent fMRI to study reward processing, known to be abnormal in psychosis. Reward and loss anticipation phases were combined to examine a motivational salience condition and compared with neutral condition. We observed abnormal activation in the left insula/parietal operculum in CHR participants given placebo compared to healthy controls associated with premature action initiation. Insular activation correlated with both positive psychotic symptoms and salience perception, as indexed by difference in reaction time between salient and neutral stimuli conditions. CBD attenuated the increased activation in the left insula/parietal operculum and was associated with overall slowing of reaction time, suggesting a possible mechanism for its putative antipsychotic effect by normalising motivational salience and moderating motor response. © 2019, The Author(s).

Estudio primario

No clasificado

Revista JAMA psychiatry
Año 2018
Cargando información sobre las referencias
Importance: Cannabidiol (CBD) has antipsychotic effects in humans, but how these are mediated in the brain remains unclear. OBJECTIVE: To investigate the neurocognitive mechanisms that underlie the therapeutic effects of CBD in psychosis. Design, Setting, and Participants: In this parallel-group, double-blind, placebo-controlled randomized clinical trial conducted at the South London and Maudsley NHS Foundation Trust in London, United Kingdom, 33 antipsychotic medication-naive participants at clinical high risk (CHR) of psychosis and 19 healthy control participants were studied. Data were collected from July 2013 to October 2016 and analyzed from November 2016 to October 2017. INTERVENTIONS: A total of 16 participants at CHR of psychosis received a single oral dose of 600 mg of CBD, and 17 participants at CHR received a placebo. Control participants were not given any drug. All participants were then studied using functional magnetic resonance imaging (fMRI) while performing a verbal learning task. Main Outcomes and Measures: Brain activation during verbal encoding and recall, indexed using the blood oxygen level-dependent hemodynamic response fMRI signal. RESULTS: Of the 16 participants in the CBD group, 6 (38%) were female, and the mean (SD) age was 22.43 (4.95) years; of 17 in the placebo group, 10 (59%) were female, and the mean (SD) age was 25.35 (5.24) years; and of 19 in the control group, 8 (42%) were female, and the mean (SD) age was 23.89 (4.14) years. Brain activation (indexed using the median sum of squares ratio of the blood oxygen level-dependent hemodynamic response effects model component to the residual sum of squares) was analyzed in 15 participants in the CBD group, 16 in the placebo group, and 19 in the control group. Participants receiving placebo had reduced activation relative to controls in the right caudate during encoding (placebo: median, -0.027; interquartile range [IQR], -0.041 to -0.016; control: median, 0.020; IQR, -0.022 to 0.056; <i>P</i> &lt; .001) and in the parahippocampal gyrus and midbrain during recall (placebo: median, 0.002; IQR, -0.016 to 0.010; control: median, 0.035; IQR, 0.015 to 0.039; <i>P</i> &lt; .001). Within these 3 regions, activation in the CBD group was greater than in the placebo group but lower than in the control group (parahippocampal gyrus/midbrain: CBD: median, -0.013; IQR, -0.027 to 0.002; placebo: median, -0.007; IQR, -0.019 to 0.008; control: median, 0.034; IQR, 0.005 to 0.059); the level of activation in the CBD group was thus intermediate to that in the other 2 groups. There were no significant group differences in task performance. Conclusions and Relevance: Cannabidiol may partially normalize alterations in parahippocampal, striatal, and midbrain function associated with the CHR state. As these regions are critical to the pathophysiology of psychosis, the influence of CBD at these sites could underlie its therapeutic effects on psychotic symptoms. (PsycInfo Database Record (c) 2021 APA, all rights reserved)

Estudio primario

No clasificado

Revista The international journal of neuropsychopharmacology
Año 2018
Cargando información sobre las referencias
Background: Despite the current shift towards permissive cannabis policies, few studies have investigated the pleasurable effects users seek. Here, we investigate the effects of cannabis on listening to music, a rewarding activity that frequently occurs in the context of recreational cannabis use. We additionally tested how these effects are influenced by cannabidiol, which may offset cannabis-related harms. Methods: Across 3 sessions, 16 cannabis users inhaled cannabis with cannabidiol, cannabis without cannabidiol, and placebo. We compared their response to music relative to control excerpts of scrambled sound during functional Magnetic Resonance Imaging within regions identified in a meta-analysis of music-evoked reward and emotion. All results were False Discovery Rate corrected (P < .05). Results: Compared with placebo, cannabis without cannabidiol dampened response to music in bilateral auditory cortex (right: P = .005, left: P = .008), right hippocampus/parahippocampal gyrus (P = .025), right amygdala (P = .025), and right ventral striatum (P = .033). Across all sessions, the effects of music in this ventral striatal region correlated with pleasure ratings (P = .002) and increased functional connectivity with auditory cortex (right: P < .001, left: P < .001), supporting its involvement in music reward. Functional connectivity between right ventral striatum and auditory cortex was increased by cannabidiol (right: P = .003, left: P = .030), and cannabis with cannabidiol did not differ from placebo on any functional Magnetic Resonance Imaging measures. Both types of cannabis increased ratings of wanting to listen to music (P < .002) and enhanced sound perception (P < .001). Conclusions: Cannabis dampens the effects of music in brain regions sensitive to reward and emotion. These effects were offset by a key cannabis constituent, cannabidol. © The Author(s) 2017.

Estudio primario

No clasificado

Revista European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology
Año 2018
Cargando información sobre las referencias
Tetrahydrocannabinol (THC) and Cannabidiol (CBD) are two substances from cannabis sativa that have beenimplicated in the treatment of mental and neurological disorders. We concentrated on a previously validated neuroimaging phenotype, fronto-striatal connectivity across different striatal seeds, because of this loop's relevance to executive functioning, decision making, salience generation and motivation and its link to various neuropsychiatric conditions. Therefore, we studied the effect of THC and CBD on fronto-striatal circuitry by a seed-voxel connectivity approach using seeds from the caudate and the putamen. We conducted a cross-over pharmaco-fMRI study in 16 healthy male volunteers with placebo, 10 mg oral THC and 600 mg oral CBD. Resting state was measured in a 3 T scanner. CBD lead to an increase of fronto-striatal connectivity in comparison to placebo. In contrast to our expectation that THC and CBD show opposing effects, THC versus placebo did not show any significant effects, probably due to insufficient concentration of THC during scanning. The effect of CBD on enhancing fronto-striatal connectivity is of interest because it might be a neural correlate of its anti-psychotic effect in patients. (PsycInfo Database Record (c) 2022 APA, all rights reserved)

Estudio primario

No clasificado

Revista Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
Año 2015
Cargando información sobre las referencias
There is now considerable evidence to support the hypothesis that psychotic symptoms are the result of abnormal salience attribution, and that the attribution of salience is largely mediated through the prefrontal cortex, the striatum, and the hippocampus. Although these areas show differential activation under the influence of delta-9-tetrahydrocannabinol (delta-9-THC) and cannabidiol (CBD), the two major derivatives of cannabis sativa, little is known about the effects of these cannabinoids on the functional connectivity between these regions. We investigated this in healthy occasional cannabis users by employing event-related functional magnetic resonance imaging (fMRI) following oral administration of delta-9-THC, CBD, or a placebo capsule. Employing a seed cluster-based functional connectivity analysis that involved using the average time series from each seed cluster for a whole-brain correlational analysis, we investigated the effect of drug condition on functional connectivity between the seed clusters and the rest of the brain during an oddball salience processing task. Relative to the placebo condition, delta-9-THC and CBD had opposite effects on the functional connectivity between the dorsal striatum, the prefrontal cortex, and the hippocampus. Delta-9-THC reduced fronto-striatal connectivity, which was related to its effect on task performance, whereas this connection was enhanced by CBD. Conversely, mediotemporal-prefrontal connectivity was enhanced by delta-9-THC and reduced by CBD. Our results suggest that the functional integration of brain regions involved in salience processing is differentially modulated by single doses of delta-9-THC and CBD and that this relates to the processing of salient stimuli. (PsycInfo Database Record (c) 2021 APA, all rights reserved)

Estudio primario

No clasificado

Revista Archives of general psychiatry
Año 2012
Cargando información sobre las referencias
CONTEXT: The aberrant processing of salience is thought to be a fundamental factor underlying psychosis. Cannabis can induce acute psychotic symptoms, and its chronic use may increase the risk of schizophrenia. We investigated whether its psychotic effects are mediated through an influence on attentional salience processing. OBJECTIVE: To examine the effects of Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) on regional brain function during salience processing. DESIGN: Volunteers were studied using event-related functional magnetic resonance imaging on 3 occasions after administration of Δ9-THC, CBD, or placebo while performing a visual oddball detection paradigm that involved allocation of attention to infrequent (oddball) stimuli within a string of frequent (standard) stimuli. SETTING: University center. PARTICIPANTS: Fifteen healthy men with minimal previous cannabis use. MAIN OUTCOME MEASURES: Symptom ratings, task performance, and regional brain activation. RESULTS: During the processing of oddball stimuli, relative to placebo, Δ9-THC attenuated activation in the right caudate but augmented it in the right prefrontal cortex. Δ9-Tetrahydrocannabinol also reduced the response latency to standard relative to oddball stimuli. The effect of Δ9-THC in the right caudate was negatively correlated with the severity of the psychotic symptoms it induced and its effect on response latency. The effects of CBD on task-related activation were in the opposite direction of those of Δ9-THC; relative to placebo, CBD augmented left caudate and hippocampal activation but attenuated right prefrontal activation. CONCLUSIONS: Δ9-Tetrahydrocannabinol and CBD differentially modulate prefrontal, striatal, and hippocampal function during attentional salience processing. These effects may contribute to the effects of cannabis on psychotic symptoms and on the risk of psychotic disorders.

Hilo de publicación

Este hilo de publicación incluye 4 referencias