Revisiones sistemáticas relacionados a este tópico

loading
10 Referencias (10 articles) loading Revertir Estudificar

Revisión sistemática

No clasificado

Autores Yang D , Ruan Y , Chen Y
Revista Journal of paediatrics and child health
Año 2023
Cargando información sobre las referencias
Spinal muscular atrophy (SMA) is an autosomal recessive hereditary disease which leads to progressive muscle weakness and atrophy. Our systematic review and meta-analysis aims to explore the efficacy and safety of onasemnogene abeparvovec in SMA patients. We searched PubMed, EMBASE, Web of Science and Cochrane through April 2022. Ten reports enrolling 250 SMA patients were included. CHOP INTEND and motor-milestone significant improvements were detected at both short- and long-term follow-up. Common adverse events included pyrexia, vomiting, thrombocytopenia and elevated aminotransferases. Thrombocytopenia (79.3%, 95%CI: 65.8~90.5) and elevated aminotransferases (71.7%, 95%CI: 62.5~80.1) were more common in SMA patients aged older than 8 months. Despite the paucity of randomized control trial data and low quality of evidence to establish the safety and efficacy of onasemnogene abeparvovec in the treatment of SMA, the data suggest that it is a valuable option for patients with this condition.

Revisión sistemática

No clasificado

Revista American journal of speech-language pathology
Año 2021
Cargando información sobre las referencias
Purpose The aim of this study was to provide clinicians with an overview of literature relating to dysphagia in spinal muscular atrophy (SMA) to guide assessment and treatment. Method In this clinical focus article, we review literature published in Scopus and PubMed between 1990 and 2020 pertaining to dysphagia in SMA across the life span. Original research articles that were published in English were included. Searches were conducted within four themes of inquiry: (a) etiology and phenotypes, (b) respiratory systemic deficits and management, (c) characteristics of natural history dysphagia and its treatment, and (d) dysphagia outcomes with disease-modifying therapies. Articles for the first two themes were selected by content experts who identified the most salient articles that would provide clinicians foundational background knowledge about SMA. Articles for the third theme were identified using search terms, including spinal muscular atrophy,swallow,dysphagia,bulbar, nutrition,g-tube,alternative nutrition,jaw,mouth,palate, OR mandible. Search terms for the fourth theme included spinal muscular atrophy AND nusinersen OR AVXS-101/onasemnogene abeparvovec-xioi. Review of Pertinent Literature Twenty-nine articles were identified. Findings across identified articles support the fact that patients with SMA who do not receive disease-modifying therapy exhibit clinically significant deficits in oropharyngeal swallow function. Few investigations provided systematic information regarding the underlying physiological deficits responsible for this loss in function, the timing of the degradation, or how disease-modifying therapies change these outcomes. Conclusion Future research outlining the physiological and functional oropharyngeal swallowing deficits among patients with SMA who receive disease-modifying therapy is critical in developing standards of dysphagia care to guide clinicians.

Revisión sistemática

No clasificado

Revista Gene therapy
Año 2021
Cargando información sobre las referencias
Spinal muscular atrophy (SMA) is a severe childhood neuromuscular disease for which two genetic therapies, Nusinersen (Spinraza, an antisense oligonucleotide), and AVXS-101 (Zolgensma, an adeno-associated viral vector of serotype 9 AAV9), have recently been approved. We investigated the pre-clinical development of SMA genetic therapies in rodent models and whether this can predict clinical efficacy. We have performed a systematic review of relevant publications and extracted median survival and details of experimental design. A random effects meta-analysis was used to estimate and compare efficacy. We stratified by experimental design (type of genetic therapy, mouse model, route and time of administration) and sought any evidence of publication bias. 51 publications were identified containing 155 individual comparisons, comprising 2573 animals in total. Genetic therapies prolonged survival in SMA mouse models by 3.23-fold (95% CI 2.75-3.79) compared to controls. Study design characteristics accounted for significant heterogeneity between studies and greatly affected observed median survival ratios. Some evidence of publication bias was found. These data are consistent with the extended average lifespan of Spinraza- and Zolgensma-treated children in the clinic. Together, these results support that SMA has been particularly amenable to genetic therapy approaches and highlight SMA as a trailblazer for therapeutic development.

Revisión sistemática

No clasificado

Revista Expert Opin. Orphan Drugs
Año 2020
Cargando información sobre las referencias
Introduction: Spinal muscular atrophy (SMA) is a very serious debilitating rare condition mainly affecting newborns and infants. Areas covered: The aim of current chapter is to present the standard of care and treatment available in Bulgaria from both clinical and economic point of view. The authors are presenting the latest clinical studies in the area of this rare neuromuscular disorder as well as describing a very detailed economic evaluation from the perspective of Bulgarian healthcare insurance fund regarding Nusinersen. A systematic literature review of the published clinical studies of nusinersen for the period March 2015–March 2019 was performed following predefined criteria. Expert opinion: Nusinersen is a significant therapeutic advancement, and is the first option to delay the progression of the disease. A number of clinical trials have demonstrated the efficacy and tolerability of nusinersen and achieving better clinical outcomes after its use compared to placebo. Despite the expected significant increase of the budget for SMA, nusinersen provides new possibilities of treatment of children with SMA in Bulgaria and innovative disease-modifying approach to the unmet medical needs of the patients and their families.

Revisión sistemática

No clasificado

Revista Danish medical journal
Año 2020
Cargando información sobre las referencias
INTRODUCTION: 5q spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder caused by insufficient survival motor neuron protein. Untreated SMA involves death or permanent respiratory support (type 1), inability to walk (type 2) or ability to walk (type 3). The incidence of SMA is 1 in 7,500 live births, equivalant to eight children being born with SMA in Denmark annually. METHODS: We undertook a systematic review of the efficacy of nusinersen as SMA treatment. We included randomised controlled trials and cohort studies. Our primary endpoints were survival without permanent respiratory support and change in motor function. RESULTS: We identified 658 articles and included 13 of these (two randomised controlled trials and 11 cohort studies). Nusinersen increased survival without permanent respiratory support in SMA type 1 and increased motor function development in types 1-3. Nusinersen treatment before symptom onset in children with presymptomatic SMA produced near-normal motor development. So far, nusinersen has only minor safety concerns mostly related to the lumbar puncture. CONCLUSIONS: Nusinersen increased survival without permanent ventilatory support in children with SMA type 1. Improvements in SMA type 2 and 3 were less evident. Better outcomes were seen in young children with a short disease duration, particularly in children receiving nusinersen before symptom onset. Newborn SMA screening may facilitate presymptomatic treatment with splice modification (nusinersen, risdiplam) or gene implantation therapy (AVXS-101, zolgensma).

Revisión sistemática

No clasificado

Revista Expert Opin. Orphan Drugs
Año 2020
Cargando información sobre las referencias

Revisión sistemática

No clasificado

Revista The Annals of pharmacotherapy
Año 2019
Cargando información sobre las referencias
Objective: To review the efficacy and safety of nusinersen (Spinraza) in the treatment of spinal muscular atrophy (SMA). Data Sources: An English-language literature search of PubMed and MEDLINE (1946 to June 2018) was performed using the terms nusinersen, ISIS-SMN (Rx), and spinal muscular atrophy. Manufacturer prescribing information, abstracts, article bibliographies, and clinicaltrials.gov data were incorporated for additional materials. Study Selection/Data Extraction: All clinical trials of nusinersen were identified and analyzed in the review. Data Synthesis: Nusinersen is the first drug therapy approved for the treatment of SMA. It is a novel modified antisense oligonucleotide designed to treat SMA caused by mutations in chromosome 5q that lead to survival motor neuron protein deficiency. Nusinersen has been studied for safety, pharmacokinetics, and efficacy in both open-label and randomized controlled trials. The studies show improvement in motor function across SMA of all types. The most common adverse effects were respiratory tract infections, headache, back pain, constipation, and post–lumbar puncture syndrome. Relevance to Patient Care and Clinical Practice: Based on phase III trial data, nusinersen produced positive changes in the clinical course of patients with SMA. The acquisition and administration of nusinersen present a number of challenges in clinical practice. Its intrathecal delivery and costly price tag must be recognized. Conclusion: Nusinersen is safe and effective in patients with SMA. It was well tolerated across all studied age groups. © The Author(s) 2018.

Revisión sistemática

No clasificado

Autores Meylemans A , De Bleecker J
Revista Acta neurologica Belgica
Año 2019
Cargando información sobre las referencias
Recent discovery of nusinersen, an antisense oligonucleotide drug, has provided encouragement for improving treatment of spinal muscular atrophy. No therapeutic options currently exist for this autosomal recessive motor neuron disorder. Nusinersen is developed for intrathecal use and binds to a specific sequence within the survival motor neuron 2 pre-messenger RNA, modifying the splicing process to promote expression of full-length survival motor neuron protein. We performed a MEDLINE and CENTRAL search to investigate the current evidence for treatment with nusinersen in patients with spinal muscular atrophy. Four papers were withheld, including two phase-3 randomized controlled trials, one phase-2 open-label clinical trial and one phase-1 open-label clinical trial. Outcome measures concerned improvement in motor function and milestones, as well as event-free survival and survival. Results of these trials are hopeful with significant and clinically meaningful improvement due to treatment with intrathecal nusinersen in patients with early- and later-onset spinal muscular atrophy, although this does not restore age-appropriate function. Intrathecal nusinersen has acceptable safety and tolerability. Further trials regarding long-term effects and safety aspects as well as trials including broader spinal muscular atrophy and age categories are required and ongoing. © 2019, Belgian Neurological Society.

Revisión sistemática

No clasificado

Revista The Cochrane database of systematic reviews
Año 2019
Cargando información sobre las referencias
Background: Spinal muscular atrophy (SMA) is caused by a homozygous deletion of the survival motor neuron 1 (SMN1) gene on chromosome 5, or a heterozygous deletion in combination with a point mutation in the second SMN1 allele. This results in degeneration of anterior horn cells, which leads to progressive muscle weakness. By definition, children with SMA type I are never able to sit without support and usually die or become ventilator dependent before the age of two years. There have until very recently been no drug treatments to influence the course of SMA. We undertook this updated review to evaluate new evidence on emerging treatments for SMA type I. The review was first published in 2009 and previously updated in 2011. Objectives: To assess the efficacy and safety of any drug therapy designed to slow or arrest progression of spinal muscular atrophy (SMA) type I. Search methods: We searched the Cochrane Neuromuscular Specialised Register, CENTRAL, MEDLINE, Embase, and ISI Web of Science conference proceedings in October 2018. We also searched two trials registries to identify unpublished trials (October 2018). Selection criteria: We sought all randomised controlled trials (RCTs) or quasi-RCTs that examined the efficacy of drug treatment for SMA type I. Included participants had to fulfil clinical criteria and have a genetically confirmed deletion or mutation of the SMN1 gene (5q11.2-13.2). The primary outcome measure was age at death or full-time ventilation. Secondary outcome measures were acquisition of motor milestones, i.e. head control, rolling, sitting or standing, motor milestone response on disability scores within one year after the onset of treatment, and adverse events and serious adverse events attributable to treatment during the trial period. Treatment strategies involving SMN1 gene replacement with viral vectors are out of the scope of this review. Data collection and analysis: We followed standard Cochrane methodology. Main results: We identified two RCTs: one trial of intrathecal nusinersen in comparison to a sham (control) procedure in 121 randomised infants with SMA type I, which was newly included at this update, and one small trial comparing riluzole treatment to placebo in 10 children with SMA type I. The RCT of intrathecally-injected nusinersen was stopped early for efficacy (based on a predefined Hammersmith Infant Neurological Examination-Section 2 (HINE-2) response). At the interim analyses after 183 days of treatment, 41% (21/51) of nusinersen-treated infants showed a predefined improvement on HINE-2, compared to 0% (0/27) of participants in the control group. This trial was largely at low risk of bias. Final analyses (ranging from 6 months to 13 months of treatment), showed that fewer participants died or required full-time ventilation (defined as more than 16 hours daily for 21 days or more) in the nusinersen-treated group than the control group (hazard ratio (HR) 0.53, 95% confidence interval (CI) 0.32 to 0.89; N = 121; a 47% lower risk; moderate-certainty evidence). A proportion of infants in the nusinersen group and none of 37 infants in the control group achieved motor milestones: 37/73 nusinersen-treated infants (51%) achieved a motor milestone response on HINE-2 (risk ratio (RR) 38.51, 95% CI 2.43 to 610.14; N = 110; moderate-certainty evidence); 16/73 achieved head control (RR 16.95, 95% CI 1.04 to 274.84; moderate-certainty evidence); 6/73 achieved independent sitting (RR 6.68, 95% CI 0.39 to 115.38; moderate-certainty evidence); 7/73 achieved rolling over (RR 7.70, 95% CI 0.45 to 131.29); and 1/73 achieved standing (RR 1.54, 95% CI 0.06 to 36.92; moderate-certainty evidence). Seventy-one per cent of nusinersen-treated infants versus 3% of infants in the control group were responders on the Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND) measure of motor disability (RR 26.36, 95% CI 3.79 to 183.18; N = 110; moderate-certainty evidence). Adverse events and serious adverse events occurred in the majority of infants but were no more frequent in the nusinersen-treated group than the control group (RR 0.99, 95% CI 0.92 to 1.05 and RR 0.70, 95% CI 0.55 to 0.89, respectively; N = 121; moderate-certainty evidence). In the riluzole trial, three of seven children treated with riluzole were still alive at the ages of 30, 48, and 64 months, whereas all three children in the placebo group died. None of the children in the riluzole or placebo group developed the ability to sit, which was the only milestone reported. There were no adverse effects. The certainty of the evidence for all measured outcomes from this study was very low, because the study was too small to detect or rule out an effect, and had serious limitations, including baseline differences. This trial was stopped prematurely because the pharmaceutical company withdrew funding. Various trials and studies investigating treatment strategies other than nusinersen, such as SMN2 augmentation by small molecules, are ongoing. Authors' conclusions: Based on the very limited evidence currently available regarding drug treatments for SMA type 1, intrathecal nusinersen probably prolongs ventilation-free and overall survival in infants with SMA type I. It is also probable that a greater proportion of infants treated with nusinersen than with a sham procedure achieve motor milestones and can be classed as responders to treatment on clinical assessments (HINE-2 and CHOP INTEND). The proportion of children experiencing adverse events and serious adverse events on nusinersen is no higher with nusinersen treatment than with a sham procedure, based on evidence of moderate certainty. It is uncertain whether riluzole has any effect in patients with SMA type I, based on the limited available evidence. Future trials could provide more high-certainty, longer-term evidence to confirm this result, or focus on comparing new treatments to nusinersen or evaluate them as an add-on therapy to nusinersen. Copyright © 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Revisión sistemática / Síntesis amplia

No clasificado

Revista Neurology
Año 2018
Cargando información sobre las referencias
ObjectiveTo identify the level of evidence for use of nusinersen to treat spinal muscular atrophy (SMA) and review clinical considerations regarding use.MethodsThe author panel systematically reviewed nusinersen clinical trials for patients with SMA and assigned level of evidence statements based on the American Academy of Neurology's 2017 therapeutic classification of evidence scheme. Safety information, regulatory decisions, and clinical context were also reviewed.ResultsFour published clinical trials were identified, 3 of which were rated above Class IV. There is Class III evidence that in infants with homozygous deletions or mutations of SMN1, nusinersen improves the probability of permanent ventilation-free survival at 24 months vs a well-defined historical cohort. There is Class I evidence that in term infants with SMA and 2 copies of SMN2, treatment with nusinersen started in individuals younger than 7 months results in a better motor milestone response and higher rates of event-free survival than sham control. There is Class I evidence that in children aged 2-12 years with SMA symptom onset after 6 months of age, nusinersen results in greater improvement in motor function at 15 months than sham control. Nusinersen was safe and well-tolerated.Clinical contextEvidence of efficacy is currently highest for treatment of infantile-and childhood-onset SMA in the early and middle symptomatic phases. While approved indications for nusinersen use in North America and Europe are broad, payer coverage for populations outside those in clinical trials remain variable. Evidence, availability, cost, and patient preferences all influence decision-making regarding nusinersen use.