BACKGROUND: Depression is an important morbidity associated with stroke that impacts on recovery, yet is often undetected or inadequately treated.
OBJECTIVES: To evaluate the benefits and harms of pharmacological intervention, non-invasive brain stimulation, psychological therapy, or combinations of these to treat depression after stroke.
SEARCH METHODS: This is a living systematic review. We search for new evidence every two months and update the review when we identify relevant new evidence. Please refer to the Cochrane Database of Systematic Reviews for the current status of this review. We searched the Specialised Registers of Cochrane Stroke, and Cochrane Depression Anxiety and Neurosis, CENTRAL, MEDLINE, Embase, five other databases, two clinical trials registers, reference lists and conference proceedings (February 2022). We contacted study authors.
SELECTION CRITERIA: Randomised controlled trials (RCTs) comparing: 1) pharmacological interventions with placebo; 2) non-invasive brain stimulation with sham stimulation or usual care; 3) psychological therapy with usual care or attention control; 4) pharmacological intervention and psychological therapy with pharmacological intervention and usual care or attention control; 5) pharmacological intervention and non-invasive brain stimulation with pharmacological intervention and sham stimulation or usual care; 6) non-invasive brain stimulation and psychological therapy versus sham brain stimulation or usual care and psychological therapy; 7) pharmacological intervention and psychological therapy with placebo and psychological therapy; 8) pharmacological intervention and non-invasive brain stimulation with placebo and non-invasive brain stimulation; and 9) non-invasive brain stimulation and psychological therapy versus non-invasive brain stimulation and usual care or attention control, with the intention of treating depression after stroke.
DATA COLLECTION AND ANALYSIS: Two review authors independently selected studies, assessed risk of bias, and extracted data from included studies. We calculated mean difference (MD) or standardised mean difference (SMD) for continuous data, and risk ratio (RR) for dichotomous data, with 95% confidence intervals (CIs). We assessed heterogeneity using the I² statistic and certainty of the evidence according to GRADE.
MAIN RESULTS: We included 65 trials (72 comparisons) with 5831 participants. Data were available for: 1) 20 comparisons; 2) nine comparisons; 3) 25 comparisons; 4) three comparisons; 5) 14 comparisons; and 6) one comparison. We found no trials for comparisons 7 to 9. Comparison 1: Pharmacological interventions Very low-certainty evidence from eight trials suggests pharmacological interventions decreased the number of people meeting the study criteria for depression (RR 0.70, 95% CI 0.55 to 0.88; P = 0.002; 8 RCTs; 1025 participants) at end of treatment and very low-certainty evidence from six trials suggests that pharmacological interventions decreased the number of people with inadequate response to treatment (RR 0.47, 95% CI 0.32 to 0.70; P = 0.0002; 6 RCTs; 511 participants) compared to placebo. More adverse events related to the central nervous system (CNS) (RR 1.55, 95% CI 1.12 to 2.15; P = 0.008; 5 RCTs; 488 participants; very low-certainty evidence) and gastrointestinal system (RR 1.62, 95% CI 1.19 to 2.19; P = 0.002; 4 RCTs; 473 participants; very low-certainty evidence) were noted in the pharmacological intervention than in the placebo group. Comparison 2: Non-invasive brain stimulation Very low-certainty evidence from two trials show that non-invasive brain stimulation had little to no effect on the number of people meeting the study criteria for depression (RR 0.67, 95% CI 0.39 to 1.14; P = 0.14; 2 RCTs; 130 participants) and the number of people with inadequate response to treatment (RR 0.84, 95% CI 0.52, 1.37; P = 0.49; 2 RCTs; 130 participants) compared to sham stimulation. Non-invasive brain stimulation resulted in no deaths. Comparison 3: Psychological therapy Very low-certainty evidence from six trials suggests that psychological therapy decreased the number of people meeting the study criteria for depression at end of treatment (RR 0.77, 95% CI 0.62 to 0.95; P = 0.01; 521 participants) compared to usual care/attention control. No trials of psychological therapy reported on the outcome inadequate response to treatment. No differences in the number of deaths or adverse events were found in the psychological therapy group compared to the usual care/attention control group. Comparison 4: Pharmacological interventions with psychological therapy No trials of this combination reported on the primary outcomes. Combination therapy resulted in no deaths. Comparison 5: Pharmacological interventions with non-invasive brain stimulation Non-invasive brain stimulation with pharmacological intervention reduced the number of people meeting study criteria for depression at end of treatment (RR 0.77, 95% CI 0.64 to 0.91; P = 0.002; 3 RCTs; 392 participants; low-certainty evidence) but not the number of people with inadequate response to treatment (RR 0.95, 95% CI 0.69 to 1.30; P = 0.75; 3 RCTs; 392 participants; very low-certainty evidence) compared to pharmacological therapy alone. Very low-certainty evidence from five trials suggest no difference in deaths between this combination therapy (RR 1.06, 95% CI 0.27 to 4.16; P = 0.93; 487 participants) compared to pharmacological therapy intervention and sham stimulation or usual care. Comparison 6: Non-invasive brain stimulation with psychological therapy No trials of this combination reported on the primary outcomes.
AUTHORS' CONCLUSIONS: Very low-certainty evidence suggests that pharmacological, psychological and combination therapies can reduce the prevalence of depression while non-invasive brain stimulation had little to no effect on the prevalence of depression. Pharmacological intervention was associated with adverse events related to the CNS and the gastrointestinal tract. More research is required before recommendations can be made about the routine use of such treatments.
BACKGROUND: Incidence of cancer-related fatigue (CRF), which can persist 5 to 10 years, is nearly 85% in cancer patients. It severely affects the quality of life and is strongly associated with poor prognosis. As clinical trial data on CRF treated with methylphenidate and ginseng, two potential medicines, has been accumulating, an updated meta-analysis was performed to evaluate and compare the efficacy and safety of the two medicines in CRF.
METHODS: Randomized controlled trials that investigated methylphenidate or ginseng in the treatment of CRF were identified through a literature search. The primary outcome was CRF relief. Standardized mean difference (SMD) was used to analyze the effect.
RESULTS: Eight studies on methylphenidate were included and the pooled SMD was 0.18 [95% confidence interval (95% CI): -0.00 to 0.35, P=0.05]. Five studies on ginseng were included and the SMD was 0.32 (95% CI: 0.17-0.46, P<0.0001). Results of network meta-analysis showed that the order was ginseng, methylphenidate, placebo from high efficacy to low and ginseng was significantly better than methylphenidate (SMD =0.23, 95% CI: 0.01-0.45). Incidences of insomnia and nausea caused by ginseng were significantly lower than those caused by methylphenidate (P<0.05).
CONCLUSIONS: Both methylphenidate and ginseng can significantly ameliorate CRF. Ginseng may be superior to methylphenidate because ginseng may be more effective and might cause less adverse events. Head-to-head trials with fixed protocol are warranted to identify the optimal medical strategy.
BACKGROUND: Selective serotonin reuptake inhibitors (SSRIs) might theoretically reduce post-stroke disability by direct effects on the brain. This Cochrane Review was first published in 2012 and last updated in 2019.
OBJECTIVES: To determine if SSRIs are more effective than placebo or usual care at improving outcomes in people less than 12 months post-stroke, and to determine whether treatment with SSRIs is associated with adverse effects.
SEARCH METHODS: We searched the Cochrane Stroke Group Trials Register (last searched 7 January 2021), Cochrane Controlled Trials Register (CENTRAL, Issue 7 of 12, 7 January 2021), MEDLINE (1946 to 7 January 2021), Embase (1974 to 7 January 2021), CINAHL (1982 to 7 January 2021), PsycINFO (1985 to 7 January 2021), and AMED (1985 to 7 January 2021). PsycBITE had previously been searched (16 July 2018). We searched clinical trials registers.
SELECTION CRITERIA: We included randomised controlled trials (RCTs) recruiting stroke survivors within the first year. The intervention was any SSRI, at any dose, for any period, and for any indication. The comparator was usual care or placebo. Studies reporting at least one of our primary (disability score or independence) or secondary outcomes (impairments, depression, anxiety, quality of life, fatigue, cognition, healthcare cost, death, adverse events and leaving the study early) were included in the meta-analysis. The primary analysis included studies at low risk of bias.
DATA COLLECTION AND ANALYSIS: We extracted data on demographics, stroke type and, our pre-specified outcomes, and bias sources. Two review authors independently extracted data. We used mean difference (MD) or standardised mean differences (SMDs) for continuous variables, and risk ratios (RRs) for dichotomous variables, with 95% confidence intervals (CIs). We assessed bias risks and applied GRADE criteria.
MAIN RESULTS: We identified 76 eligible studies (13,029 participants); 75 provided data at end of treatment, and of these two provided data at follow-up. Thirty-eight required participants to have depression to enter. The duration, drug, and dose varied. Six studies were at low risk of bias across all domains; all six studies did not need participants to have depression to enter, and all used fluoxetine. Of these six studies, there was little to no difference in disability between groups SMD -0.0; 95% CI -0.05 to 0.05; 5 studies, 5436 participants, high-quality evidence) or in independence (RR 0.98; 95% CI 0.93 to 1.03; 5 studies, 5926 participants; high-quality evidence) at the end of treatment. In the studies at low risk of bias across all domains, SSRIs slightly reduced the average depression score (SMD 0.14 lower, 95% CI 0.19 lower to 0.08 lower; 4 studies; 5356 participants, high-quality evidence) and there was a slight reduction in the proportion with depression (RR 0.75, 95% CI 0.65 to 0.86; 3 studies, 5907 participants, high-quality evidence). Cognition was slightly better in the control group (MD -1.22, 95% CI -2.37 to -0.07; 4 studies, 5373 participants, moderate-quality evidence). Only one study (n = 30) reported neurological deficit score (SMD -0.39, 95% CI -1.12 to 0.33; low-quality evidence). SSRIs resulted in little to no difference in motor deficit (SMD 0.03, -0.02 to 0.08; 6 studies, 5518 participants, moderate-quality evidence). SSRIs slightly increased the proportion leaving the study early (RR 1.57, 95% CI 1.03 to 2.40; 6 studies, 6090 participants, high-quality evidence). SSRIs slightly increased the outcome of a seizure (RR 1.40, 95% CI 1.00 to 1.98; 6 studies, 6080 participants, moderate-quality evidence) and a bone fracture (RR 2.35, 95% CI 1.62 to 3.41; 6 studies, 6080 participants, high-quality evidence). One study at low risk of bias across all domains reported gastrointestinal side effects (RR 1.71, 95% CI 0.33, to 8.83; 1 study, 30 participants). There was no difference in the total number of deaths between SSRI and placebo (RR 1.01, 95% CI 0.82 to 1.24; 6 studies, 6090 participants, moderate quality evidence). SSRIs probably result in little to no difference in fatigue (MD -0.06; 95% CI -1.24 to 1.11; 4 studies, 5524 participants, moderate-quality of evidence), nor in quality of life (MD 0.00; 95% CI -0.02 to 0.02, 3 studies, 5482 participants, high-quality evidence). When all studies, irrespective of risk of bias, were included, SSRIs reduced disability scores but not the proportion independent. There was insufficient data to perform a meta-analysis of outcomes at end of follow-up. Several small ongoing studies are unlikely to alter conclusions.
AUTHORS' CONCLUSIONS: There is high-quality evidence that SSRIs do not make a difference to disability or independence after stroke compared to placebo or usual care, reduced the risk of future depression, increased bone fractures and probably increased seizure risk.
PURPOSE: Cancer-related fatigue (CRF) is a common symptom among patients with cancer. The efficacy of placebo, however, was never the main objective of any meta-analysis. Predicting the efficacy of placebo may facilitate researchers in designing future clinical trials for the treatment of CRF.
METHODS: We performed a systematic review searching for prospective clinical trials comparing any treatment versus placebo for the treatment of CRF. We included studies that enrolled patients with any primary site of neoplasia and any stage of cancer. We excluded all studies that assessed fatigue related to any treatment. The primary endpoint of this study is the mean effect of placebo on fatigue according to the Functional Assessment of Chronic Illness (FACIT-F) and Brief Fatigue Inventory (BFI) scales. The secondary endpoint was the proportion of patients who reported improvement in fatigue (response rate).
RESULTS: We found 520 studies, and 29 studies with 3758 participants were included in the meta-analysis. Placebo had a mean effect of + 4.88 (95%CI + 2.45 to + 7.29) using the FACIT-F scale, although it was statistically worse than the interventions studied (p = 0.005). Using the BFI scale, placebo had an average effect of + 0.64 (95%CI + 0.02 to + 1.30), although it was also worse than the other interventions studied (p = 0.002). In terms of the response rate, 29% (95%CI 25-32%) of patients taking a placebo reported a significant improvement in CRF compared with 36% of patients treated with other interventions (p = 0.030).
CONCLUSIONS: Placebo treatments had a significant effect on CRF, and predicting these effects may help design future studies for CRF.
BACKGROUND: Depression is an important consequence of stroke that influences recovery yet often is not detected, or is inadequately treated. This is an update and expansion of a Cochrane Review first published in 2004 and previously updated in 2008.
OBJECTIVES: The primary objective is to test the hypothesis that pharmacological, psychological therapy, non-invasive brain stimulation, or combinations of these interventions reduce the incidence of diagnosable depression after stroke. Secondary objectives are to test the hypothesis that pharmacological, psychological therapy, non-invasive brain stimulation or combinations of these interventions reduce levels of depressive symptoms and dependency, and improve physical functioning after stroke. We also aim to determine the safety of, and adherence to, the interventions.
SEARCH METHODS: We searched the Specialised Register of Cochrane Stroke and the Cochrane Depression Anxiety and Neurosis (last searched August 2018). In addition, we searched the following databases; Cochrane Central Register of Controlled Trials, CENTRAL (the Cochrane Library, 2018, Issue 8), MEDLINE (1966 to August 2018), Embase (1980 to August 2018), PsycINFO (1967 to August 2018), CINAHL (1982 to August 2018) and three Web of Science indexes (2002 to August 2018). We also searched reference lists, clinical trial registers (World Health Organization International Clinical Trials Registry Platform (WHO ICTRP); to August 2018 and ClinicalTrials.gov; to August 2018), conference proceedings; we also contacted study authors.
SELECTION CRITERIA: Randomised controlled trials (RCTs) comparing: 1) pharmacological interventions with placebo; 2) one of various forms of psychological therapy with usual care and/or attention control; 3) one of various forms of non-invasive brain stimulation with sham stimulation or usual care; 4) a pharmacological intervention and one of various forms of psychological therapy with a pharmacological intervention and usual care and/or attention control; 5) non-invasive brain stimulation and pharmacological intervention with a pharmacological intervention and sham stimulation or usual care; 6) pharmacological intervention and one of various forms of psychological therapy with placebo and psychological therapy; 7) pharmacological intervention and non-invasive brain stimulation with placebo plus non-invasive brain stimulation; 8) non-invasive brain stimulation and one of various forms of psychological therapy versus non-invasive brain stimulation plus usual care and/or attention control; and 9) non-invasive brain stimulation and one of various forms of psychological therapy versus sham brain stimulation or usual care plus psychological therapy, with the intention of preventing depression after stroke.
DATA COLLECTION AND ANALYSIS: Review authors independently selected studies, assessed risk of bias, and extracted data from all included studies. We calculated mean difference (MD) or standardised mean difference (SMD) for continuous data and risk ratio (RR) for dichotomous data with 95% confidence intervals (CIs). We assessed heterogeneity using the I2 statistic and assessed the certainty of evidence using GRADE.
MAIN RESULTS: We included 19 RCTs (21 interventions), with 1771 participants in the review. Data were available for 12 pharmacological trials (14 interventions) and seven psychological trials. There were no trials of non-invasive brain stimulation compared with sham stimulation or usual care, a combination of pharmacological intervention and one of various forms of psychological therapy with placebo and psychological therapy, or a combination of non-invasive brain stimulation and a pharmacological intervention with a pharmacological intervention and sham stimulation or usual care to prevent depression after stroke. Treatment effects were observed on the primary outcome of meeting the study criteria for depression at the end of treatment: there is very low-certainty evidence from eight trials (nine interventions) that pharmacological interventions decrease the number of people meeting the study criteria for depression (RR 0.50, 95% CI 0.37 to 0.68; 734 participants) compared to placebo. There is very low-certainty evidence from two trials that psychological interventions reduce the proportion of people meeting the study criteria for depression (RR 0.68, 95% CI 0.49 to 0.94, 607 participants) compared to usual care and/or attention control. Eight trials (nine interventions) found no difference in death and other adverse events between pharmacological intervention and placebo groups (RR 1.25, 95% CI 0.32 to 4.91; 496 participants) based on very low-certainty evidence. Five trials found no difference in psychological intervention and usual care and/or attention control groups for death and other adverse events (RR 1.18, 95% CI 0.73 to 1.91; 975 participants) based on very low-certainty evidence.
AUTHORS' CONCLUSIONS: The available evidence suggests that pharmacological interventions and psychological therapy may prevent depression and improve mood after stroke. However, there is very low certainty in these conclusions because of the very low-certainty evidence. More trials are required before reliable recommendations can be made about the routine use of such treatments after stroke.
BACKGROUND: Our objective was to determine whether, compared with control interventions, pharmacologic interventions reduce the severity of fatigue in patients with cancer or recipients of hematopoietic stem-cell transplantation (hsct).
METHODS: For a systematic review, we searched medline, embase, the Cochrane Central Register of Controlled Trials, cinahl, and Psychinfo for randomized trials of systemic pharmacologic interventions for the management of fatigue in patients with cancer or recipients of hsct. Two authors independently identified studies and abstracted data. Methodologic quality was assessed using the Cochrane Risk of Bias tool. The primary outcome was fatigue severity measured using various fatigue scales. Data were synthesized using random-effects models.
RESULTS: In the 117 included trials (19,819 patients), the pharmacologic agents used were erythropoietins (
CONCLUSIONS: Erythropoietin and methylphenidate significantly reduced fatigue severity in patients with cancer and in recipients of hsct. Concerns about the safety of those agents might limit their usefulness. Future research should identify effective interventions for fatigue that have minimal adverse effects.
Antecedentes: Los psicoestimulantes son frecuentemente prescritos fuera de la etiqueta para adultos con trastorno depresivo mayor o trastorno bipolar. El uso frecuente y creciente de estimulantes en los trastornos del estado de ánimo merece una evaluación cuidadosa de la eficacia de esta clase de agentes. En este sentido, se pretende estimar la eficacia de los psicoestimulantes en adultos con depresión unipolar o bipolar. MÉTODOS: La base de datos de PubMed / Medline se realizó desde el inicio hasta el 16 de enero de 2016 para ensayos clínicos aleatorios, controlados con placebo, que investigaron la eficacia antidepresiva de los psicoestimulantes en el tratamiento de adultos con depresión unipolar o bipolar. RESULTADOS: Los psicoestimulantes se asociaron con una mejoría estadísticamente significativa en los síntomas depresivos en el trastorno depresivo mayor (OR = 1,41; IC del 95%, 1,13 - 1,78, P = 0,003). Los resultados de eficacia difirieron entre los psicoestimulantes evaluados como una función de las tasas de respuesta: ar / modafinil (OR, 1,47; IC del 95%, 1,20-1,81; P = 0,0002); Dextroanfetamina (OR, 7,11; IC del 95%, 1,09 - 46,44; P = 0,04); Lisdexamfetamina dimesilato (OR, 1,21; IC del 95%, 0,94 - 1,56; P = ns); Metilfenidato (OR, 1,49; IC del 95%, 0,88 - 2,54; P = ns). Los resultados de eficacia también difirieron entre los agentes utilizados como terapia adyuvante (OR, 1,39; IC del 95%: 1,19-1,64) o monoterapia (OR, 2,25; IC del 95%: 0,67-7,52). CONCLUSIONES: Los psicoestimulantes no están suficientemente estudiados como adyuvantes o monoterapia en adultos con trastornos del estado de ánimo. La mayoría de los estudios publicados tienen limitaciones metodológicas significativas (por ejemplo, muestras heterogéneas, medidas dependientes, tipo / dosis del agente). Además de las mejoras en los factores metodológicos, una hipótesis comprobable es que los psicoestimulantes pueden ser probados más apropiadamente en dominios selectos de la psicopatología (por ejemplo, el procesamiento emocional cognitivo), más que como antidepresivos de "amplio espectro".
Introducción: El trastorno por déficit de atención / hiperactividad (TDAH) es uno de los trastornos neuropsiquiátricos más frecuentes de la infancia y la adolescencia. Los estimulantes son generalmente la primera opción del fármaco; Sin embargo, hasta el 20% de los pacientes no responden a ellos. Los estimulantes también pueden empeorar el sueño comórbido, el estado de ánimo y los trastornos de ansiedad, y están asociados con problemas de mal uso y desvío. El bupropión, un inhibidor de la recaptación de dopamina y norepinefrina, es una alternativa no estimulante prometedora con reportes de resultados positivos para el manejo del ADHD en poblaciones adolescentes y adultas. Este estudio revisa sistemáticamente los ensayos clínicos sobre el tema. Métodos: Utilizando las palabras clave bupropión o Wellbutrin o Zyban o Elontril y trastorno de déficit de atención con hiperactividad o TDAH o ADDH, una búsqueda preliminar en las bases de datos PubMed y Ovid produjo 25,455 artículos publicados en inglés entre el 1 de enero de 1988 y el 1 de mayo de 2016. De estos , Hubo sólo seis artículos sobre ensayos clínicos con niños. También se revisaron artículos completos para referencias de interés. Resultados Todos los ensayos abiertos, controlados y aleatorios disponibles demostraron la eficacia del bupropion en la mejora de los síntomas del TDAH. Los tres ensayos de cabeza a cabeza encontraron que el bupropión tenía una eficacia comparable a la del metilfenidato (p> 0,05). Sin embargo, un estudio multicéntrico doble ciego controlado por placebo de bupropión encontró tamaños de efecto más pequeños para el bupropión, tal como se cuantificaron utilizando las calificaciones de los síntomas del TDAH por parte del profesor y los padres, que el metilfenidato. En términos de tolerabilidad, un ensayo de cabeza a cabeza encontró que la cefalea se observó con más frecuencia en el grupo tratado con metilfenidato que en el grupo tratado con bupropión, mientras que la frecuencia de otros efectos secundarios no difirió significativamente. CONCLUSIÓN: Los hallazgos actuales deben ser interpretados con precaución debido a la base de datos muy limitada. El bupropión debe considerarse para el manejo farmacológico del ADHD infantil y adolescente, pero se justifican más ensayos controlados aleatorios con tamaños de muestra más grandes. También hay evidencia de sus beneficios en niños con TDAH comórbido y conducta, uso de sustancias o trastornos depresivos.
Depression is an important morbidity associated with stroke that impacts on recovery, yet is often undetected or inadequately treated.
OBJECTIVES:
To evaluate the benefits and harms of pharmacological intervention, non-invasive brain stimulation, psychological therapy, or combinations of these to treat depression after stroke.
SEARCH METHODS:
This is a living systematic review. We search for new evidence every two months and update the review when we identify relevant new evidence. Please refer to the Cochrane Database of Systematic Reviews for the current status of this review. We searched the Specialised Registers of Cochrane Stroke, and Cochrane Depression Anxiety and Neurosis, CENTRAL, MEDLINE, Embase, five other databases, two clinical trials registers, reference lists and conference proceedings (February 2022). We contacted study authors.
SELECTION CRITERIA:
Randomised controlled trials (RCTs) comparing: 1) pharmacological interventions with placebo; 2) non-invasive brain stimulation with sham stimulation or usual care; 3) psychological therapy with usual care or attention control; 4) pharmacological intervention and psychological therapy with pharmacological intervention and usual care or attention control; 5) pharmacological intervention and non-invasive brain stimulation with pharmacological intervention and sham stimulation or usual care; 6) non-invasive brain stimulation and psychological therapy versus sham brain stimulation or usual care and psychological therapy; 7) pharmacological intervention and psychological therapy with placebo and psychological therapy; 8) pharmacological intervention and non-invasive brain stimulation with placebo and non-invasive brain stimulation; and 9) non-invasive brain stimulation and psychological therapy versus non-invasive brain stimulation and usual care or attention control, with the intention of treating depression after stroke.
DATA COLLECTION AND ANALYSIS:
Two review authors independently selected studies, assessed risk of bias, and extracted data from included studies. We calculated mean difference (MD) or standardised mean difference (SMD) for continuous data, and risk ratio (RR) for dichotomous data, with 95% confidence intervals (CIs). We assessed heterogeneity using the I² statistic and certainty of the evidence according to GRADE.
MAIN RESULTS:
We included 65 trials (72 comparisons) with 5831 participants. Data were available for: 1) 20 comparisons; 2) nine comparisons; 3) 25 comparisons; 4) three comparisons; 5) 14 comparisons; and 6) one comparison. We found no trials for comparisons 7 to 9. Comparison 1: Pharmacological interventions Very low-certainty evidence from eight trials suggests pharmacological interventions decreased the number of people meeting the study criteria for depression (RR 0.70, 95% CI 0.55 to 0.88; P = 0.002; 8 RCTs; 1025 participants) at end of treatment and very low-certainty evidence from six trials suggests that pharmacological interventions decreased the number of people with inadequate response to treatment (RR 0.47, 95% CI 0.32 to 0.70; P = 0.0002; 6 RCTs; 511 participants) compared to placebo. More adverse events related to the central nervous system (CNS) (RR 1.55, 95% CI 1.12 to 2.15; P = 0.008; 5 RCTs; 488 participants; very low-certainty evidence) and gastrointestinal system (RR 1.62, 95% CI 1.19 to 2.19; P = 0.002; 4 RCTs; 473 participants; very low-certainty evidence) were noted in the pharmacological intervention than in the placebo group. Comparison 2: Non-invasive brain stimulation Very low-certainty evidence from two trials show that non-invasive brain stimulation had little to no effect on the number of people meeting the study criteria for depression (RR 0.67, 95% CI 0.39 to 1.14; P = 0.14; 2 RCTs; 130 participants) and the number of people with inadequate response to treatment (RR 0.84, 95% CI 0.52, 1.37; P = 0.49; 2 RCTs; 130 participants) compared to sham stimulation. Non-invasive brain stimulation resulted in no deaths. Comparison 3: Psychological therapy Very low-certainty evidence from six trials suggests that psychological therapy decreased the number of people meeting the study criteria for depression at end of treatment (RR 0.77, 95% CI 0.62 to 0.95; P = 0.01; 521 participants) compared to usual care/attention control. No trials of psychological therapy reported on the outcome inadequate response to treatment. No differences in the number of deaths or adverse events were found in the psychological therapy group compared to the usual care/attention control group. Comparison 4: Pharmacological interventions with psychological therapy No trials of this combination reported on the primary outcomes. Combination therapy resulted in no deaths. Comparison 5: Pharmacological interventions with non-invasive brain stimulation Non-invasive brain stimulation with pharmacological intervention reduced the number of people meeting study criteria for depression at end of treatment (RR 0.77, 95% CI 0.64 to 0.91; P = 0.002; 3 RCTs; 392 participants; low-certainty evidence) but not the number of people with inadequate response to treatment (RR 0.95, 95% CI 0.69 to 1.30; P = 0.75; 3 RCTs; 392 participants; very low-certainty evidence) compared to pharmacological therapy alone. Very low-certainty evidence from five trials suggest no difference in deaths between this combination therapy (RR 1.06, 95% CI 0.27 to 4.16; P = 0.93; 487 participants) compared to pharmacological therapy intervention and sham stimulation or usual care. Comparison 6: Non-invasive brain stimulation with psychological therapy No trials of this combination reported on the primary outcomes.
AUTHORS' CONCLUSIONS:
Very low-certainty evidence suggests that pharmacological, psychological and combination therapies can reduce the prevalence of depression while non-invasive brain stimulation had little to no effect on the prevalence of depression. Pharmacological intervention was associated with adverse events related to the CNS and the gastrointestinal tract. More research is required before recommendations can be made about the routine use of such treatments.